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THE NORMAL MODES OF CAVITY ANTENNAS

ABSTRACT

This dissertation is primarily an attempt at arriving at an under-

standing of the resonance properties of small cavity antennas by studying

their normal modes. These modes are similar to the free oscillations

of other oscillatory systems. Each one has a characteristic configuration

and a c.,mplex exponential time dependence. It is assumed that there is

an infinite, discrete set of them. There is one fundamental distinction

between them and others more commonly investigated; namely, that they

occupy an infinite volume and that the damping is a result of radiation.

One result of this is that the customary statements of existence, orthogo-

nality, and completeness cannot be applied. These questions are not con-

sidered in the present work. The concept of Q is discussed and it is de-

fined in terms of the complex frequency.

The normal modes are actually transient oscillations, and one section

is employed for the development and discussion of some pertinent time-

dependent electromagnetic theory. An equivalence theorem is first de-

veloped. This states that the field in a source-free region is equivalent
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to that produced by a double layer of surface currents, electric currents

I = H x n, and magnetic currents K = n x E, where n is the outward

normal. This much of the theorem is identical with the customary forms.

In addition to the boundary values it is necessary to include initial values

if the boundary values are not known for all past times. Thus, if initial

values of the fields are known at t = ta, and boundary values for t > ta ,

then the surface currents plus volume impulse currents which "fire" at

t = ta generate an equivalent field. These volume impulse currents are

of two kinds, electric and magnetic, and these have strengths D and B,

respectively. The termination properties of the equivalent currents are

also discussed.

The behavior of waves with a complex exponential time dependence

is the second topic of section II. The envelope of such a wave is an ex-

ponential curve which increases in the direction of propagation. In a

waveguide the phase velocity is greater than the envelope velocity, so

that individual waves advance with respect to the envelope and hence

the waves themselves increase as they propagate. An example is given

to show that this does not lead to paradoxical situations. It is further

shown that these fields in a waveguide have quasi-steady-state character-

istics with respect to cutoff phenomena.

The third section of the dissertation contains a theoretical treat-

ment of the normal modes of radiating cavities. An arbitrary cavity

opening into a half-space is considered, and by a variational method a
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stationary formula for the complex frequencies (eigenvalues) is

obtained.

In the cavity region the field is expanded as a sum of cavity modes.

This expansion is discussed in detail in an appendix, because most

previous discussions of this are incorrect in that the expansions used

are not complete.

The theory greatly simplifies when the cavity is restricted to be

a section of waveguide, since ordinary waveguide theory can then be

used. Further simplifications are possible when it is assumed that the

aperture field is just thelowest order waveguide mode, and that the

cavity has a high Q. Several interesting analogies to circuits appear

when these assumptions are made.

A series of calculations was made for the first normal mode of a

square waveguide cavity. The cavity has a side dimension a, depth f,

and is filled with a medium of dielectric constant e r" It is specified

by the four parameters t E r, a and Q, where X is the free-space
a -X

wavelength at resonance. Curves of I and Q vs. for various values

of E r' are shown. It is shown that there is a minimum value of Q as-

sociated with every value of a and that specific values of t and e are

necessary to obtain it. The minimum Q was computed and is shown in

a
a graph as a function of -. The accompanying parameters - and 6 r

are also shown. It turns out that the minimum Q graph is a straight

line on log-log paper; the following formula closely represents it for
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a < 0.35:

min = 0.424(a ) - 3 .

The effect of a lossy dielectric may be found by using a complex

dielectric constant. The relation of the dielectric loss factor to the Q

and radiation efficiency is discussed.

The last section of this work deals with some experiments that

were made to check the theory. A brief review of the methods of cor-

relating measured and calculated resonance frequency and Q is first

made. Then the results of measurements on three square waveguide

cavity antennas are given. The antennas had C values of 7.7, 2.0, anda

0.4, with corresponding E r values of 3.80, 3.88, and 8.41. The first

six modes of the first one were measured, four modes of the second

were measured, and only the first mode of the last one was measured.

The measured resonance frequencies agreed very well with the calcu-

lated ones; i. e., within a few per cent. The values of Q did not agree

so closely, but the agreement was generally within 30%, which is

reasonable. Various factors which might affect these results are

discussed.

AF 18(600)85 486-7 vii
*1

S



Page 1 of 126

'4 THE NORMAL MODES OF CAVITY ANTENNAS

I. INTRODUCTION

In recent years small cavity antennas-have become important

for a variety of purposes. A typical antenna is shown in Fig. 1. It con-

sists of a deformation in a conducting screen, together with some

exciting mechanism. The aperture

0 is on the order of a quarter of a

wavelength in its greatest dimension.

These antennas always have marked

resonance properties, which are un-
0p

desirable, since an antenna is more

useful when it can be operated over

a broad band of frequencies.. The

resonance properties are therefore

Fig. 1. Caviy antenna, of considerable interest, and it is

the purpose of this dissertation to discuss them.

The antenna characteristics which are of interest are the resonance

frequency and the Q. The Q, or quality factor, is a measure of the

sharpness of resonance, and it can be directly connected to the operating

range of the antenna in terms of the standing wave ratio on the input

transmission line. (See section IV below.)

AF 18(600)85 486-7 1
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The general definition of Q is as follows: i

Q 2r Average energy stored (11)
Energy dissipated per cycle,, at resonance

If the system has more than one degree of freedom there is a Q defined

for each mode, and this holds for a system with an infinite number of

degree of freedom, as, for example, a closed cavity. However, when the

concept is extended to antennas a serious difficulty appears. The energy

in an electromagnetic field is defined in terms of volume integ-rals, and

they are infinite for an antenna because E 2 decreases as 1/r 2 , but the

volume increases as r 3 . Hence Q as defined by eq. (1.1) is infinite for

an antenna.

This difficulty is in principle resolved by stating that by stored

energy we do not mean the total field energy, but only that part of it in

the "'local" field, as opposed to the radiation field. But this statement

does not clear up the trouble - we must now decide what we mean by

local field. This must be done very carefully; since, in general, super-

position does not apply to energy, and it cannot be arbitrarily broken

down into components. In the case of a waveguide there are well-de-

fined orthogonal modes, and superposition may be applied to the mode

energies. Schwingerl has used this property to show that in the neigh-

borhood of a discontinuity in a waveguide the total field energy is the

sum of two parts - that in the propagating mode, and that stored in the

higher modes. He showed that the latter component by itself has all the

AF 18(600)85 486-7 2



properties which are associated with stored energy of circuits.

Chu2 examined the antenna problem by means of orthogonal

modes. He considered an omnidirectional antenna and expanded the

field outside a sphere surrounding the antenna in spherical waves.

Each wave could be replaced by an equivalent circuit which had a well-

defined Q. In this way Chu obtained relations between the antenna size,

Q, and gain. He assumed very idealized conditions between the antenna

and the surrounding sphere, so that the theory gives limits of perforn-

ance of actual antennas.

3

Counter defined stored energy as the difference between the total

energy and a "flow" energy, which he defined as the energy in that

plane wave which has the same Poynting vector as the field under con-

F sideration. This gives a basis for calculating a finite Q for an antenna

* from eq. (1.1). However, it can be shown that this definition does not

agree with Schwinger's in the waveguide case.

In this paper a different method of attack is adopted; Q will be

calculated by finding the normal modes of oscillation of the antenna. It

is, of course, well-known that the transients give an indication of the Q.

For example, if a system "rings" for a long time after the source is

removed, then it has a high Q. A more precise statement of this is

now made by a brief discussion of a simple RLC circuit.

Consider a series RLC circuit, as in Fig. 2. The energy definition

(1.1) leads directly to the value,

AF 18(600)85 486-7 3
F.

--- 7-- =



rL

R (1.2)

where W = resonance frequency. (1.3)

If the terminals in Fig. . are connected the resulting circuit will have

R L C one normal mode of oscillation. In this

mode the voltage and current have a time

dependence of the form e where p.

Fig. 2. Elementary series cir ipit.
is a complex number:

Pn = W + jn (1.4)

The real and imaginary portions of the complex frequency Pn can be

found in terms of the circuit constants; one way to do this is as follows.

The assumed exponential time dependence. allows us to keep the. concept

of impedance; the transient (normal-mode) impedance is identical to

the steady-state impedance, withw replaced by Pn. Now consider

terminals across the capacitor, as in Fig. 3. A consideration of the

I "

R
C 7V

Fig. 3. Series circuit oscillating in the normal mode.

* In this paper the symbol j s used exclusively.

AF 18(600)85 486-7 4
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voltages and currents shows that the impedance looking to the left at

the terminals must be the negative of that looking to the right. Thus

1 = - (R + jpnL). (1.5)
JPn C

When (1.4) is inserted and real and imaginary parts separated, one

obtains
R

SZL (1.6)

2 2 2 (1.7)(n -°r " n'

Now define the normal mode Q:

Q Wn (1.8)n - 2 fn

It is evident that this is approximately equal to the steady-state Q

(eq. (12 )). It is only approximate because the resonance and normal-

mode frequencies are slightly different, but the difference is less than

1% for Q > 3.5.

The normal mode Q may be directly connected with the stored

energy. When Q is high the field decays very slowly, and we may
-24 n t

reasonably speak of an average stored energy that dies out as e

Call this average energy U. Then
- -2 nt
U -e (1.9)

-a : . nU (1.10)

AF 18(600)85 486-7 5
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Qn=- 1 co (1.11

I

n t

This compares with eq. (1.1) for the steady-state Q.

We shall subsequently assume that the radiating cavity has normal

modes which have a similarly defined Q. The subject of normal modes

in open regions is not altogether new; in particular, oscillations about

a sphere and a spheroid have been discussed for a long time. These

bodies were examined first because their surfaces coincided with

separable coordinate surfaces. The sphere problem is treated in de-

tail by Stratton, who finds expressions for the fields as well as the

first few eigenvalues. Schelkunoff5 gives a summary of the results

obtained by several writers on the prolate spheroid. This problem is

of considerable interest because a wire is the limiting case of a pro-

late spheroid.

Oscillations on other shapes have apparently been considered

only to a very minor extent. Schelkunoff also discusses modes on a

very thin wire bent to an arbitrary curve, and makes some calculations.

for a straight wire. Apart from this discussion, the author can find no

reference to normal modes of more complex antenna structures.

The present investigation uses a variational method to obtain the

solution. This is a powerful technique which quickly yields a good

AF 18(600)85 486-7 6
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F

approximation, It is an outgrowth of the work done by Schwinger on

discontinuities in waveguides. It consists essentially of obtaining an

integral equation for an aperture field (or obstacle current) and then

properly manipulating the equation to obtain a stationary formula for

some parameter of interest. The techniques have been applied to a

wide variety of field theory problems, such as impedance calculations,

scattering and diffraction problems, and propagation problems. Some

E, 7, 8

typical references to this work are listed in the references. The

present application is similar in some ways to the theory used to

9
compute the propagation constant for a slotted waveguide.

AF 18(600)85 486-7 7
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II. ELECTROMAGNETIC TRANSIENTS

In this section we discuss several aspects of time-dependent

electromagnetic field theory which are interesting and useful in con-

nection with the normal mode theory in the next section. First the

time dependent equivalence theorem is established. Then the behavior

of fields with a time dependence ejct e f t is discussed.

1. EQUIVALENCE THEOREM

The equivalence theorem is a frequently used theorem for scalar

and vector fields. It states that the field interior to some surface S is

equivalent to that produced by certain source distributions on S. The

theorem is intimately connected with uniqueness theorems which state

that functions which satisfy approprilte equations are uniquely specified

inside S if their values on S are given. For steady-state electromag-

netic fields the equivalent sources are electric and magnetic currents,

with strengths Hx n and nx E. The uniqueness theorem states that

either tangential E or H specifies the interior field, so that with ap-

propriate boundary conditions either set of currents can be made suf-

ficient by itself. Most classical statements of this result include surface

ciarges.as well as currents." This is a redundant formulation, since

the surface charges and currents are connected by the continuity equation.

The time dependent theorem follows from the steady-state case

by the use of Fourier integrals. However, this method obscures some

points, and it is of interest to examine this case independently. The

AF 18(600)85 486-7 8 " 5.
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general uniqueness theorem for a time-dependent electromagnetic

field 1 states that the distribution of E and H throughout V at the

initial time ta plus either tangential E or H on the bounding surface

for t >/ ta specifies the field in V for t t> ta. An equivalence theorem

will now be set up in which the field is produced by electric and (or)

magnetic currents on S plus a volume distribution of impulse currents

which "fire" at t = ta. The standard statements of this theorem

(Larmor-Tedone formulas)' 3 use surface charges as well as surface

currents, and they go back in time to t = - o0. There is no provision

for initial values. The method of proof used here is substantially the

same as that- used by Professor V. H. Rumsey to prove the theoremn

for the case of sinusoidal timedependence.*

Let there be given a region V bounded by S containing a linear

isotropic medium (Fig. 4). The medium constants u- are continuous

functions of position; it is. assumed that any sharp boundaries are

fn replaced by thin layers where the con-

stants vary rapidly but continuously.

Inside V is an electromagnetic field

generated by sources 1. The fields sat-

Fig. 4.
isfy the Maxwell equations:

* Classroom presentation.

AF 18(600)85 486-7 9
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Vx E = -/ H (.1

E

7xH+ + J. (2.2)

For a Green's function we use the field due to an impulse current

J0" This current is an impulse in both space and time; it is defined as

_o = q 8 (P Q)S(t - to). (2.3)

The 8 -function is the unit impulse function, defined by

f(t) 6 (t - to) dt = o) i (2.4)
- 0 otherwise.

The symbol 8 (P - Q) stands for the triple product,

8 (P-Q)= 8 (xp - xQ) 8 (yp- yQ)8 (zp- ZQ). (2.5)

The impulse current and the fieids it would produce are discussed in

Appendix I.

Let G o (Pto, Qt, q) and F o (Pt o , Qt, q) be the electric and mag-

netic fields, respectively, at point P at time to due to an impulse cur-

rent Jo at point Q at time t. By the law of superposition, the electric

field of an arbitrary current distribution J can be written as 1 4

E (Pt0 ) = f ft I (Qt) Go (P to, Qt, 1) dvQ dt, (2.6)

where 1 is a unit impulse current parallel to I, and I is the magnitude

* Ilationalized NIKS units are used throughout this paper.

AF 18(600)85 486-7 10



of J. This may also be written as

E(Pto) d dvQ G3 (Pt o , Qt, ) dt. (2.7)

Because of the finite velocity of propagation, the upper limit on the

time integral can be reduced from + co to (t o - (r/c)), where r is the

distance from P to Q.

The fields Go and Fo* are the response of the system (i. e., the

region V) to the elementary source -o" They satisfy the equations

V Go = -g (2.8)'3to

Go

7xF o = E + o Go + q 8 (P - Q) 5 (t - to). (2.9)

Inside V the constants u. E 0- are the same for the Green's function as

for the fields (E,H); outside V they are as yet arbitrary.

Now form the volume integral of V . (E x Fo - Go x H).

f V. (E x xFo)dv fV (Fo. V x E - V x Fo) dvp (2.10)

-_Fo . - E E t +7 Go

+ q 8 (P- Q) 8 (t - to)j} dvp

(GxF° _ V{~~GO •[ E +0-E +-- dvp.
VV (Go x H) dv H - . - _G Eo + j -

to (2.11)

* The argwments of thesetagd imilar'functions are sometimes omitted'for convenience. 41n any such case

it wI1l.be.c1ear what the argument-is.

AF 18(600)85 486-7 11
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The integrations are performed over points P. When they are sub-

tracted and the divergence theorem is used on the left-hand side, one

obtains

(E~x Fo - Gox H). n ds = f . o Fo )dv

+f (G ~E -G2dv+f)G . J dv - q .E (Qt 8 (t to)
- t -a to + -- --

(2.12)

Now integrate over time, from t = ta to t = o. The time t a is the

initial time, while t o is a variable time. In the final regu.lt (e.g.,

eq. (2.30)), to is the observer's time.

dt fS(E x F o -G o x H) • n ds dt fV (HSF- Fo--) H
fa . .. ta -a to  _s

(Go fv= fv ) v++JtdtVE(Goa E  E -- )dv+ dt GO J dv-q E(Qto).

fa -a-- " -'ao Ja ..
(2.13)

The time dependence of Go and F o can occur only as (t - to), hence

3 _o _0'aFo
a to at

and (2.14)
-1 Go _D Go
-at o  'at

Interchange the order of integration in the first two volume integrals

and use (2.14). The result is

o  dv+ E G 0  +f f Go dv
E(Qto)f H -- F t = ta -- ta ta V -

- dt (E x o - Gox H)- nds. (.15)

AF 18(600)85 486-7 12
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At the upper limit, t go Fo, > and Go are zero, since

F 0 (Pto, Q t. q) Go (P to, Q t, q) 0 for to < (t + 1). (2.16)
C

Hence

q -E(Qto) =V - B(Pta) F 0 (Pto, Qta, q) chip

+ fV D(Pta). G 0 (Pta, Qtai q) dv P

+ dt f Go (Pto, Qt, q) -J(Pt) dvP

- dt f E(Pt) x F 0 (Pt0 , Qt, q) .n dsp

+ f COdt f G0 (P t0 , Q t, q) xH(P t) n dsp. (2.17)
ta

To interpret these integrals we need the reciprocity theorem.

The mathematical statement can be quickly obtained from eq. (2.15),

if we let the time interval be (- co, + co ) instead of (ta, co ), and if we

let (E, H) be the fields at (Pt) due to an impulse current m at (Mtl):

E(Pt) =Go (Pt, Mt 1 . m) (2.18)

H(Pt) =F 0 (Pt, Mt 1 , in). (2.19)

Then, we obtain from (2.15),

q -G 0 (Qto) Mt 1 , n) - f cdt f G 0 (Pt 0 , Qt, q) *m 8 (P -M) 8 (t -tl) dvp

= fg F 0 (Pt, Mt. in). F 0 (Pt0 , Qt, q)~ dvp

(Equation continued-an nextpage.)
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+ f . Go(Pt, Mt 1 , in)• Go(Pto, Qt; q) : -o dvp

-f- dt f [G 0 (Pt, Mt,, m) x F 0 (Pt 0 , Qt, q)

-_Go(Pt o , Qt, q) xFo(Pt, Mtl, m)].. n dsp. (2.20)

The second factor in each of the two volume integrals on the right-hand

side is zero at the upper limit by eq. (2.16), and because the first factors

have the source and observer times interchanged, they are zero at

t - o. The surface integral must be a constant because the left-hand

side is independent of S. To show that the constant is zero, let S re-

cede to infinity.

By eq. (2.16) the zero intervals of Go(Pt, Mt 1 , m) and

Fo(Pt o , Qt, q) overlap, because the distances from P to points M

and Q are infinite. It follows that the surface integral is identically

zero for all t.* The final result, the reciprocity theorem, is

q. Go(Qt o , Mt 1 , m) = m. Go(Mt o , Qt 1 , q). (2.21)

The method used to establish this theorem is an extension to the time-

dependent case of the method used by Schelkunoff.

An alternative form of the theorem is obtained as follows. Let

Gl(Pt o , Qt, q) and Fl(Pt o , Qt, q) be the electric and magnetic fields

of an impulse magnetic current of strength q. These fields satisfy

* This result is a special case of a more-generaltheorem: ,the surface integralJ4 El x 112 - _F2 × R ds

is zero when all sources of both fields are on the same side of S.

AF 18(600)85 486-7 14
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'aFl
VxGl q 8 (P -Q) 8 (t- to ) (2.22)

-G1 +- G 1 . (2.23)
a -to

Now form 17. {Go(Pt, Mt 1 , m) x F 1 (Pt o , Qt, q)

- G(Pt o , Qt, q) x Fo(Pt, Mt1, r)}

and integrate. After manipulations identical to those above, one obtains

-q*" Fo(Qto , Mt 1 , m) = m - GI(Mt o , Qt 1 , q). (2.24)

The integrals on the right-hand side of (2.17) are now examined

separately. With the help of eq. (2.24) the first term becomes

- B(Pta)° Fo(Pto, Qta, q) dvp = q" fGI(Qt o , Pta, B) dvp.
fV fV

(2.25)

This is just the electric field at (Qto) due to magnetic current im-

pulses which "fire" at t = ta; they are distributed according to the

magnetic induction B which existed then.

Use eq. (2.21) on the second term of (2.17) to obtain

f D(Pta)" G°(Pto, Qta, q) dvp = f G(Qto, Pta, D) dvp. (2.26)
V

This is the electric field at (Qto) due to electric current impulses

which "fire" at t = ta; they are distributed according to the electric

displacement D which existed then.

AF 18(600)85 486-7 15
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The surface integrals are similarly transformed:

- O dt f E(Pt) x F 0 (Pt, Qt,, q) -n dsp
ta S

q dt f Gl(Qt., Pt, (n x E)) dsp
ta s (2.27)

Ofdt fSG 0 (Pto, Qt, q) x H(Pt) -n dsp
ta S

a" f G(Qto, Pt, (H x n)) dsp.

a (2.28)

These terms represent the electric field at Qt o due to magnetic cur-

rents K = n x E and electric currents I =fIPI n.distributed on S, for

t> ta.

The last volume integral is

fO dtf GO(Pto, Qt, q) Jdvpq OJ dt fG(to.P t, J) d
ta V ta V

(2.29)

This is the contribution to the field at (Qto) from actual currents

within V. The first terms, eqs. (2.25) through (2.28), represent con-

tributions from sources outside V and from sources existing at t < ta .

Notice that the source q multiplies all the source integrals, as

well as the electric field E(Qto), in (2.17). Since q is arbitrary we

may drop it and write

AF 18(600)85 486-7 16



E(Qt°) fta dt f Go(Qt o , Pt, 3) dvp + fVG 1 (Qto, Pta, B) dvp

+ f G0 (Qto, P ta, D) dvp + fo dt fGo (Q to, P t, (H x n)) ds p
V ta fS

00

+ dt f G(Qto, Pt, (n xE)) dsp. (Z. 30)
ta  S

The equivalence theorem symbolized in eq. (2.30) may be stated

as follows. If a source-free linear isotropic region V bounded by S

is excited by external sources, then the internal fields are reproduced

identically by surface electric and magnetic currents distributed on S

according to H x n and n x E, respectively. The effect of pre-existing

fields may be accounted for by volume electric and magnetic impulse

currents distributed according to D and B, respectively, which occur

at the initial time.

If the sources I are outside V, the first term of (Z.30) is zero.

If J exists only inside V, then the first three terms alone must give

the field inside V, and the surface currents therefore give zero to in-

terior points. Since the inside and outside may be interchanged, we

may infer that the surface currents give zero on the source side of S.

This can also be seen from the fact that the surface currents have

precisely the values needed to terminate the field. (At a surface cur-

rent layer, tangential E is discontinuous by an amount K and tangential
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H, by an amount I; but K= n x E and 3 = X n, so these terminate

the field.

Another interesting condition arises when there are no sources

after t = ta; there is only a transient field existing, which must get

weaker in time. We may remove the surface S to infinity. In such a

case the sources on S cannot contribute to any finite point within a

finite time, so the volume impulse currents generate the complete

field. Consider the field immediately after t = ta . The currents have

disappeared, and the field essentially has the prescribed initial value.

Since the impulse currents give zero for t < ta, we have a field which

at all points of space jumps from zero to D, B at time ta, when there

are impulse electric and magnetic currents of strength D, B. Hence

we postulate that volume impulse electric currents of strength I pro-

duce a discontinuity (in time) in D equal to 1, at the time the impulse

currents occur. Similarly, volume impulse magnetic currents of

strength K produce a discontinuity in B equal to K. These postulates

are analogous to those concerning the discontinuities in space produced

by a surface distribution of current.

We now can make a more general statement concerning termina-

tion of the field. The equivalent surface and volume currents may be

regarded as surface currents on the hyper-surface bounding the (xyzt)

This termination property maybe used-to set up the equivalence theorem. See Baker and Copson,Is

also Schelkunoff, S. A.,-Some 6quivalence Theorgmsof Electtomagnetics and Their Application to
Rad4ation+Pro.blems, B.S.T.J., Vo!. XV, January 1936. p. 92.
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volume of interest. These currents generate a unique field in the four-

dimensional region, and terminate it at the surface. We may make this

volume finite by closing it with the hyper-plane t = tb. The appropriate

currents to put on this plane are the volume impulse currents

= - D, Ko = - B. This leaves us with a set of surface currents

which produce a field inside some volume in (xyzt) space. Outside this

hyper-volume the fields are zero.

This result is a generalization of the three-dimensional picture

obtained by Larmor and Tedone. Undoubtedly it could have been ob-

tained more compactly and more elegantly by starting with the four-

dimensional formulation of Maxwell's equations.

So far, the external boundary conditions on the equivalent currents

have not been specified. It is evident that they are arbitrary because

the currents give zero outside S and any boundaries may be assumed

there without affecting the internal fields. If we choose a short circuit

on S (n x G = 0 on S) for the boundary condition, then the surface

electric currents will be "shorted out" and only the magnetic currents

will be left, radiating against an electric conductor. This may also be

seen by examining eq. (2.17). In the last term, Go x n will be zero on

S, and thus there is no contribution from the electric currents. Simi-

larly, open-circuit boundary conditions (nX F = 0 on S) leave only

electric currents radiating against a "magnetic conductor." These

ideas suffice to prove the uniqueness theorem mentioned above-
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that either tangential E or H on S plus initial values of E and H

throughout V uniquely specify the field.

As an example of the use of equivalent currents, consider a

cavity antenna radiating through an infinite conducting ground plane,

as in Fig. 5. Suppose that the

0 field varies sinusoidally with time

until t = t 1, at which time the aper-

ture is suddenly shorted with an

electric conductor. What will

happen to the fields in the half-

space ?

To answer this question, use

the equivalence theorem. The

Fig. 5. Cavity antenna. volume V is the half-space,

bounded by the plane of the ground plane. It is assumed that the initial

time ta is back far enough so that the contributions from the volurre

impulse currents have become insignificant. Hence the field at Q is

equivalent to that produced by electric currents I = H x- n and magnetic

currents K= n x E on the plane z = 0. The unit vector n points into

the cavity. The magnetic currents K are zero except over that portion

of the plane where the aperture is, because n x E = 0 on the ground

There is no assurance that an arbitrarily specified E or H will produce a physically possible field.

The question of existence is a perplexing one and becomes important when the boundaries of the
region include sharp edges.
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plane. T.be picture is greatly simplified when a short circuit boundary

conditionii's adopted. For now, as shown above, we are left with

K = n x 9 Ph the aperture, radiating against an infinite conducting plane

screen. But now ordinary image theory can be used and it follows that,

in the half-space, the fields produced by K on the conducting screen

are identical to the fields produced by 2 K radiating in free space.

The time dependence of K is of the form

K - cos o t U(t1 - t), (2.31)

where U(t 1 - t) is the unit step function,

0 if t > t1

U(tI - t) 1 (2.32)

To obtain the field at Q we can find the field due to an infinitesimal

source at P with the above time dependence, and integrate over the

aperture. The fields due to this elementary source are discussed in

Appendix I. It is shown there that the field at Q will vary sinusoidally

with time until t = t1 +-, at which time it will abruptly cease, possibly
c

with a spike, depending upon the phase of E when the shutter is closed.

The total field at Q is the sum of contributions from all points in the

aperture. Since the shutter is closed instantaneously, t1 is the same

* For an alternative treatment of plane boundaries, leadingto the same result, see Smythe, W. R.,

The Double Current Sheet in Diffraction, Phys. Rev., 72 December, 1947. p. 1066.
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for all points. Hence in a time r = s (Fig. 6) the field at Q willc

change from a steady-state con-

dition to zero.

The interval - will be zero

for infinitesimal apertures and will

be large for large apertures; more-

over, it is different for different

locations of the point Q. Its be-

havior is opposite to that of the

time constant sought in connection j
with the bandwidth. Thus r can

give us very little information regarding the bandwidth of the antenna.

There is no characteristic exponential time decay in the above

problem because it is a very special case. The equivalent currents

were on a plane and they were all stopped instantareously. On a more

general body one would get the exponential time dependence. For ex-

ample, if the terminals at the base of the feed probe were suddenly

shorted, the energy in the cavity would be expected to reverberate and

gradually leak out the aperture. The time decay in this case would be

connected with the bandwidth.

2. FIELDS WITH AN EXPONENTIAL TIME DEPENDENCE

An oscillating field which is dying out in time may have a time

dependence of the form e . Normal modes of a lossy network
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and normal modes in a closed cavity with a lossy dielectric have this

time dependence. In the next chapter it is assumed that the normal

modes of a radiating cavity also have this time dependence. The radi-

ating cavity differs from the'first cases because there is propagation.

We now examine this effect.

The one-dimensional wave equation for a field component is

- 2 E 1 - 2E
-Z2  cZ -t 2  0. (2.33)

If the time dependence is e j p t , where p = c + je, then the solution to

this is the sum of two waves, traveling in the positive and negative

z-directions:

j co(t - Z) - (t - Z) jCO(t + ) -e(t 2.34

E=Ae c e c +Be e (2.34)

Consider the first term. The first exponential factor represents a

wave traveling in the positive z-direction. The second factor represents

an exponential decay; for any value of z, E dies out as e However,

at a given value of t, E builds up in the positive z-direction, according

+- z
to e The field therefore appears as a sine wave which builds up

exponentially in the direction of propagation. The complete wave, in-

cluding the envelope, moves with a phase velocity c. The second term

in (2.34) gives a similar wave traveling in the negative z-direction.

These are exactly the type of waves that would be obtained on an infinite

string which is excited by a source which gets weaker in time exponentially.
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These fields become infinite for large values of z, and difficulties

with respect to surface integrals at infinity might be expected. It is

safest to say that the transient started at some finite time in the past,

and because of the finite velocity of propagation, it must be zero for

z > Z. The maximum value of the transient will be determined by the

initial conditions. If it is a spherical wave then it is zero for r > R,

and the maximum value will decrease as I/R.

a. TRANSIENTS IN WAVEGUIDES

The fields in a lossless waveguide are much more complicated

than the simple plane wave described above. A waveguide is a dis-

persive region, because the phase velocity depends on the frequency.

Hence, one would expect distortion of, say, a transient pulse, as it

traveled down the waveguide. However, normal modes exist in wave-

guide regions. For example, there would be normal modes in the

region shown in Fig. 7. The load may consist of a sheet of lossy

Short L
Circuit Waveguide Load

iig. 7. I'aveguide region.

material, or it may be an aperture in an infinite screen. The only case

for which there are no normal modes is when the load is matched; i. e.,

produces no reflections.

The steady-state solutions for waves in the guide are formally

correct for the normal modes, but the frequency 6 must be replaced
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by the complex frequency p, and some new interpretations will be

necessary. For convenience the steady-state waveguide theory is now

briefly summarized . If E(xyz), and H(xyz) are fields in the wave-

guide then the transverse components may be expressed as a sum of

waveguide modes:

t - 'z +-/Vz
E(xyz) = 2 V. (z)e. (xy) (aV e +a. e )e, (xy) (2.35)

t + -yv z +YV z
H(xyz) = 1 I_ (z) h (xy):X (b. e +b e )h (xy). (2.36)

V V

The vector functions e. and hv have x- and y-components only; they

consist of two separate sets apiece, those going with waveguide modes

which have no E z (TE)o and those which have no Hz (TM). The mode

functions satisfy the two-dimensional equation

V2 eV (xy) + Ky e_ (xy)= 0 (Z.37)

w ith
e. × n = 0 (2.38)

on the waveguide walls. This equation with boundary condition has

solutions only for values of K 2 which are discrete, real, and positive.

These eigenvalues are the cutoff wave numbers for the various modes.

The frequency and waveguide propagation constant are related by

2 k 2  2 (2.39)
KV k+YV (.9

where
wh= rek2 

(2.40)
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The propagation constant is a complex number:

yu = a. + j 8 V (2.41)

where

a attenuation constant for the v th mode (2.42)

= = phase constant for the v th mode. (2.43)
kg

The magnetic modes are similarly defined, with an appropriate boundary

condition.

The modes are orthogonal, and may be normalized to unity:

fse eg ds= fshV h. ds 5V4 (2.44)

f h d =0. (2.45)
S

The integration is over the waveguide cross section. The following re-

lations may be shown.

ev (xy) = hv (xy) X z (2.46)

S- w TE = transverse wave impedance, for TE modes

+ Y, = zTM = transverse wave impedance, for TM modes

(2.47)

+ a (2.48)
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If the load is at z : 0, the load impedance, for the vth mode, is defined
VV (0)

as The functions V. (z) and IV (z) obey transmission line
IV (0)

equations and are identical to voltage and current on a transmission

line of characteristic impedance z and propagation constant y.

Now, if E (xyz) and H (xyz) are normal-mode fields., we use the

same theory, replacing w by the complex frequency, p = co + j t . It

is of interest to examine the propagation constants Yv From eq. (2.39),

2 2 -2

-V K k. (2.49)

Substitute for y and k:

2 2/3Z(z/ 3 =K 2 2 2
CL j t, =K (0+ j2 -%o)'UE (2.50)

where, for convenience, the subscripts have been omitted. Upon separating

real and imaginary quantities, one obtains

C1 ,3 = - COE (2.51)

2 2 c
(2.52)

where w~ c cut off frequency of v' th mode. This last substitution for K

is not valid unless and E are real. Eqs. (2.51) and (2.52) may be

solved for a, and 83 the results are

a.E± (2.53)

/3'8 o~ g, (2.54)
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where 1/2
1 F1o- 2 ( c)2 - 1)2]

'2Q' 2L 2 }

(2.55)

and, as before,

Q (2.56)

The parameter g may be~called the "normal-mode factor" for

the waveguide. Some sample curves of g vs. (--) are shown in

Fig. 8. If - 0, then a - 0 and

Q. -m c - This is the steady-state

0.8
case, and g for this case is shown on

0.6 the graph.

04 When < 1 the normal mode

may be said to be "above cutoff" (of
0.2 --Q -"20 th0.2 - L 20-the v ' waveguide mode) and, if Q is

0=0 2 high, g essentially coincides with the

WC steady-state curve. The approximation

for this case is

Fig. 8. Normal-mode factor vs. frequency. g 1 - 2 , (
(2.57)

r~c

When (-w-) > 1 the normal mode is "below cutoff", and, if Q is high,

g is approximately given by

,, . . , 1- c c > 1(2.58)

AFZQ 1 52 -
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It follows then, from eqs. (2.53) and (2.54), that, for high Q,

<1 (2.59)

( -.. )> 1. (2.60)

o C2

When (-) < 1 the propagation constant 3 for a normal-mode wave is

essentially the same as that for a steady-state wave above cutoff, at the

frequency . Below cutoff the attenuation constant a, for a normal-

mode wave is essentially the same as that for a steady-state wave below

cutoff, at the frequency co. In addition to these "quasi-steady-state"

characteristics, the normal-mode wave also has attenuation above

cutoff-, and propagation below. (Actually, the attenuation is negative,

because a, and P3 have opposite signs. This point is discussed below.)

These effects of attenuation and propagation are relatively minor.

For example, the wavelength in the waveguide is given by

Xg 27 = LO (2.61)

where Xo is the wavelength of a plane wave in the medium, at the
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frequency c . Below cutoff g is very small, and Xg is very large.

Over a limited region the wave nature of the disturbance would not be

evident. One would observe a field with almost uniform phase, just

as for a steady-state wave which is below cutoff.

Awave travelinginthe positive z-direction is described by

E j(ct-/3z) =t z (2.62)

where a is a negative number. This wave increases exponentially in

the direction of propagation. Upon using eqs. (2.53) and (2.54), eq. (2.62)

becomes
z

jW(t ) e (t 2(2.63)
E=e (2.63

where

V 1, (2.64)

v2  g (2.65)

The phase velocity of the waves is v I , and we may call v 2 the envelope

velocity. For waveguide modes which have (- j) < < I (far above

cutoff), v I and v 2 approach the velocity of light, and the field becomes

a plane wave, as described by eq. (2.34). Below cutoff g - 0 and the

phase velocity becomes very large, whereas the envelope velocity.

becomes small.

In general the envelope velocity v2 is less than the phase velocity

v 1 . Hence, if any one particular sinusoid were watched it would appear
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to increase as it moved down the waveguide. A similar phenomenon

can be observed with water waves; if a group of waves advances into

still water, the individual waves will be seen to advance through the

group.

The fact that these waves increase in the direction of propagation

may appear paradoxical, since it is opposite to the steady-state attenu-

ation effect. To clear this up, it must be remembered that normal

modes are characteristic of regions where there are reverberations,

and the reflected waves will take care of any apparently paradoxical

increases of field strength. A simple example will illustrate this. Let

the region be a radiating waveguide, as shown in Fig. 9. Suppose a

waveguide mode which is below cutoff is excited at the aperture, and

the circumstances are such that the field of that mode is essentially in

phase along the length of the guide. The wave will increase toward the

rear wall, and the reflected wave will in turn increase toward the

aperture. The magnitude of the transverse electric field is illustrated

in Fig. 10, and that for the magnetic field, in Fig. 11. The incident and

reflected waves are denoted by arrows and are shown dashed. The sum

of the two, the total field, is the solid line. The transverse electric

field must be zero at the rear wall and hence the reflected electric

wave is out of phase with the incident one. The reflected magnetic

wave is in phase with the incident one.
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Fig. 9. Radiating waveguide.

E

Aperture J z
Aperture

Fig. 10. Transverse electric field Fig. 11. Transverse magnetic field
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The total field in the guide is the same as that of a steady-state

waveguide mode which is cut off - it decreases away from the aperture

according to a hyperbolic sine or cosine. The ratio of the magnitudes

of E and H is controlled by the aperture impedance. One important

distinction must be noted between this and the steady-state case - the

aperture fields are essentially those reflected from the rear wall, rather

than incident fields, and this introduces a minus sign into the impedance

expressions. This point will be noted again in the next section.
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III. NORMAL MODES OF A RADIATING CAVITY

1. GENERAL THEORY

We now consider efectromagnetic oscillations in the open region

bounded by a cavity and an infinite con-

0Q ducting plane screen, as in Fig. 12. The

electric field satisfies the wave equation

@ V z x 17x E +/ 2 0 (3.1)

and the boundary condition

n x E = O (3.2)

on the ground plane and cavity wall. In

addition, the tangential component of the
Fig. 12. Source-free radiating cavity.

electric field is continuous across the

aperture, where there may be a dielectric discontinuity. We also as-

sume that the original source of the field was inside the cavity, so that

the energy is propagated outward.

Now assume that there exists a discrete set of solutions which

SP. thave a time dependence of the form e , where

Pn='n +Jin- (3.3)

The wave equation then becomes

x Vx En - kE En 0,*

* From here on the time dependence bjpn! will'be suppressed.
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where

k2n =Pn/2L (3.5)

The possible electric fields En(xYz) are eigenfunctions and the

propagation constants kn are eigenvalues. The questions of existence,

orthogonality, and completeness of these modes are ignored here. The

conventional statements are hard to apply, because of the open region

and the fact that the modes increase as (e Dr)/r as r goes to infinity.

For purposes of computing Qn only the eigenvalues are necessary,

and a variational method will be employed to find them. In the preceding

section it was shown how the tangential electric field over a closed sur-

face can be used to generate the fields interior to the surface. This

technique is used to set up the variational formulation of the problem.

1 2
The magnetic field in the the two regions, Hn in the half-space, and Hn

in the cavity, will be expressed in terms of z x En in the aperture, and
!A1 !A2

then we will set f.Enx Hn. z ds / En x Hn  z ds. This is ob-
A n A

viously true for the correct field En, but its value lies in the fact that

values of kn calculated from this equation are stationary with respect

to first-order variations of En about the true value. (See Appendix III.)

The first step in this procedure is to find the magnetic field in the

half-space. In section II it was shown that the fields in the half-space

1are the same as those produced by magnetic currents K = -2zX E

flowing in the aperture, and radiating into free space. They are derivable

from an electric vector potential as follows:
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E =17x F (3.6)

where ; f. 1 e-Jk
F= ds. (3.7)
- 4Trr

Then
1 12

[ V V F + k F] , (3.8)- ,JPF - _

or

1 _jpE 1 -jkr 1 e-jkr ds 39H K- +K . (K ) ds. (3.9)
- 4T A r k 2  - r

The subscript n, referring to the nth normal mode, has been omitted,

and it is understood that these remarks apply to any of the modes. In

part 3 below the subscript will be used again.

The order of differentiation and integration is immaterial, because

the integration is with respect to points P; the differentiation, to points

Q. We may now write, in the customary matrix notation:

1 ,. 1
Ht (Q,k) I J (Q,P,k) K(P) dsp, (3.10)

A

where

K(P) = z x E (P), (3.11)

1 *
and F is a free-space tensor Green's function:

1 -jpe V7 e-jkr
F (Q,P,k)= - (I + ) r(3.12)Z r

F lor a detailed discussion of tensor Green's functions see reference 31!
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1
I is the unit matrix. The components of I have simple interpretations.

1
For example, F xy (QP) is (-2) times the x-component of magnetic

field at Q due to a y-oriented unit magnetic current element at P. In

common with other Green's functions it has certain symmetry properties;

i. e.,

F (Q,P)= F (P,Q). (3.13)

The tilde indicates transpose. This follows immediately from the

reciprocity theorem, eq. (2.21), which can be rewritten, for this appli-

cation,* as

;1 F1 (Q,M) P, = 1 (M,Q)q. (3.14)

If the transpose of the right-hand side is taken, (3.13) follows because

q and m are arbitrary. Eq. (3.13) is evident from an examination of

the form of the Green's function, in eq. (3.12). However, the symmetry

property is much more general than may be deduced in this manner,

because (3.12) is valid only for free space.

The magnetic field in the cavity can similarly be written as

2 2
[1 (Q,k) = J F (Q,P,k) K (P) dsp. (3.15)

A

2
The cavity Green's function, F , is a separate, extensive topic, and we

2
shall not use it explicitely. The discussion of F is therefore deferred

until Appendix II.

* Eq. (2.21) has been derived for the electric field of an electric current element; obviously, a similar

statement holds for the magnetic field of a magnetic current.
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If we set the tangential magnetic fields equal on the two sides of

the aperture, we obtain an integral equation for the electric field:

f (Q,P,k)K (P) dsp f F (Q,P,k) K (P) dsp. (3.16)
A fA

To get the invariant formula, multiply by K and integrate again.

fj K (Q) IF (Q,P,k)K (P) dsp dsQ
AQ Ap

SA J f K (Q) F (QP,k)K (P) dsp dsQ. (3.17)

"Q Ap

In Appendix III it is shown that values of k computed from this formula

are stationary with respect to first-order variations of K; about the

true value.

The stationary property makes this a good approximation method,

because, if the first guess to the field is close to the true value, then

the calculated k would be expected to be closer to its true value, since

the error in it is proportional to the square of the error in E. This is

a very rough statement, but qualitatively it gives the basic reason why

the variational method is sometimes superior to other approximation

schemes.

The tangential electric field in the aperture can be expanded in

the waveguide modes described in section II, and the expansion coef-

ficients and eigenvalues can be found by virtue of the stationary
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property (Ritz method). Then, after these are known, the fields every-

where may be found by eqs. (3.10) and (3.15). Thus, formally, the com-

plete solution of the problem may be found. Practically, of course, the

modes are known only for certain simple shapes, and each step in the

Ritz procedure involves very laborious calculations. Hence the first

step in this procedure, the first-order calculation of k, is as much as

is generally done. In this paper we go$ only a little further, to indicate

that one waveguide mode is a good approximation.

Consider the integral in eq. (3.17):

f K (Q) F (QP,k)K (P) dsp dsQ = J E x H -. ds. (3.18)
fA JA '

Q P

This has the dimensions of power, and if we divide it by f E 2 ds we
* dA

have an admittance. Actually, a similar aperture admittance has been

defined for a waveguide. If an infinite waveguide radiates through an

aperture in a ground plane, the aperture admittance, for the propagating

waveguide mode, is just

11(0)
Y - ( , (3.19)

Vl(O)

v 1 (17
where the symbols are defined in section II. It may be shown 7 that

this is equal to

fQ fA K (Q) [ F (Q,P) - F (Q,P)I K (P) dsp dsQ

[E " el ds]z (3.Z0)

* See any book on quantum mechanics for a discussion of. this technique.
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where eI = transverse electric field for the propagating mode, and

3 00
F (Q,P) = - 2' yu h (Q) h, (P). (3.21)

V =2

3
F' is written as a dyadic. y. is the characteristic admittance for the

Vth waveguide mode (y. = I/z., eq. (2.47)). This formula for Y is

stationary in the sense that its first variation is zero for variations of

E about the true value. It may be obtained by equating E x H ° z ds

across a surface consisting of the aperture and a waveguide cross-

section so remote that only the propagating mode exists there.

It is also convenient to define an "interaction admittance":
A 1

YV =A f Jp h v (Q) F' (Q,P) h 4 (P) dsp dsQ. (3.22)

Now the first approximation in solving the problem is to assume

that the transverse electric field in the aperture is just the first mode,

eI . Then we have immediately

fA E  x H- z ds- Y= 
YI " 

(3.23)

For the infinite waveguide case, the correct values for these three

quantities are actually very close. Calculations of Y1 I have been made

for a series of rectangular waveguides for the steady-state case, and

they agreed with measured values of Y to within experimental ac-

17
curacy.
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For a general cavity we could still assume that the aperture field

was the first waveguide mode appropriate to the aperture shape. Values

of j E x H - z ds would then be available. For simple geometries

Yl1 may be calculated, or Y may be measured for any shape waveguide.

The measurement would, of course, be of a steady-state impedance,

but, as shown below, this is all that is needed for one approximation

method of actually performing the numerical calculations.

It is to be observed that the general procedures used in setting up

this problem are applicable to a much wider variety of normal-mode

problems. Suppose it is desirjed to find the normal modes about an

arbitrary finite conducting bofly. The equivalent currents to be used

are electric currents J = n X H and K = E x n, flowing on the body sur-

face and radiating into free space. These currents produce the correct

field exterior to the body. Note though that K = 0 because the body is

a conductor. Hence the currents J in free space by themselves pro-

duce the fields. (The currents I are the actual currents flowing on the

body.) If E is the electric field computed from I = n x H then the

equation

Ex H- n ds = 0 (3.24)

is true for the correct H, and values of k computed from this formula

are stationary with respect to first-order variations of H about the

true value.
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Therefore it is seen that the calculation of Y I1 for a square

apwirturc is exactly the calculation needed to find the normal modes of

a square plate. Also, it is the calculation needed, to find the normal

modes of a square aperture in an infinite conducting screen, with free

space on both sides of the screen. These two systems would have a

very low Q.

2. WAVEGUIDE CAVITY

Now restrict the cavity to be a section of waveguide, as in Fig. 13.

The cross section is arbitrary but uniform

4- e along the z-axis. The direct connection

W , [ between the arbitrary cavity expansion and

the waveguide case is presented in Appendix II;

0 in this section we shall proceed on the basis

of waveguide theory, as outlined in section II.

In the waveguide region, the transverse

electric and magnetic fields of the normal

mode may be written as a sum of waveguide modes:

t
E (xyz) = Z Vv (z) ev (xy) (3.25)

V

t
H(xyz)X I(z) hv (xy). (3.26)

Inasmuch as V and I obey transmission line equations, we have

I.(,)=- Vv (t) y. cothy.z v (3.27)
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The minus sign comes from the fact that waves traveling in the positive

z-direction are the reflected waves from the short circuit. (See dis-

cussion in section II above.) Eq. (3.27) may be derived by combining

eqs. (2.35), (2.36), (2.44), (2.47), and (2.48) with the requirement that

. =0 at z= 0.

Thus the magnetic field in the aperture becomes

H (xyf y, cothy , t h. (xy) E. e. ds, (3.28)

upon substitution of (3.27) and (3.25) into (3.26). This may be written as

t .
iI (Q,k) = J (Q.P,k) . (P) dsp, (3.29)

2
where K = z x E, and the waveguide-cavity Green's function, F , is

2
F (Q,P,k) = - yv coth -1. t hv (Q) h, (P). (3.30)

V- -

Note that points P and Q are both in the aperture.

To get the variational expression, multiply (3.28) by z x E, inte-

grate, and set equal to fE x H • z ds. This gives

Z- y cothu -1,, E - e. ds) = K (Q) F (Q,Pk) K(P) dspdsQ.

(3.31)

This formula is the invariant expression for the propagation constant

k. It is made more concise by inserting the expansion for E, eq. (3.25),

for convenience omitting the argument z = - . This gives
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- yv coth -1. Vv V Y . (3.32)

As a first approximation, let all the V's be zero except V 1 .

Physically, this means that the aperture electric field is equal to the

lowest waveguide mode configuration. It is known that this cannot be

correct, but it is a good approximation, at least for those normal modes

which essentially consist of only that one waveguide mode. This ap-

proximation leaves

- Yl coth '' I  = YII" (3.33)

This formula is analogous to the formula used in section I for finding

the normal modes of an elementary circuit. If we consider terminals

at the aperture for the lowest-order waveguide mode, then

Yleft =  right

gives eq. (3.33).

Let us examine the situation which results if two modes exist at

the aperture. Let

E = V1 el + V2 e 2 " (3.34)

Then eq. (3.32) becomes

2 2 2 2
VI Yl coth y 1 t + V2 Y2 cothY 2 t + V1 YI1 + V2 Y2 2 + 2V 1 V2 YI 2 

= 0.

(3.35)

* By the reciprocity theorem, Y12 = Y2 1""
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Call this last expression F. Since we have set it identically equal to

zero, itis stationary, and

dF

dV 1

and (3.36)
dF

=0.
dV 2

Now

dF F F dk
- +- (3.37)

dV I  aVl -a k dV I

But k is the stationary parameter, and dk/dV1 = 0. Hence

VI (Yl coth / 1 { + YI 1 ) + V2 Y 12 = 0

(3.38)

V1 Y 1 2 + VZ(Y 2 coth 7 2 ' + Y2 2 ) = 0.

This is a pair of simultaneous homogeneous equations; the only way

they can be satisfied is for the determinant to be zero.

(y, coth 71 + YII) Y12

= 0. (3.39)

Y1Z (y? coth ' Z + Y2 2 )

The expansion of this determinant provides an equation for the eigen-

value k.

Consider the ratio of the amplitudes of the modes. From (3.38),

V2 -Y1

V1  yoh(3.40)VI Y2 coth YZ 2 + Y22
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Suppose the first waveguide mode is "above cutoff" and the sccond is

not. Then, according to the ideas developed in section II, Y1 is essen-

tially imaginary and Y 2 is essentially real. The hyperbolic cotangent

V2
is large when its argument is small, so- 0 as t - 0. This would

V 1

be expected from the development in section II. Refer to Fig. 10, which

portrays the transverse electric field of a cutoff mode. As t decreases

there is less attenuation, and the total aperture field decreases in re-

lation to the "excitation."

The admittances Y12 and Y22 would have to be calculated to find

a more precise effect of the higher mode. It is felt that this slight

correction is not worth the labor involved in the additional calculation.

All the calculations made on the basis of one waveguide mode agree

well enough with experiment to support this view.

3. APPLICATION TO SQUARE WAVEGUIDE

We shall now apply the first approximation of the variational

method to a square waveguide, see Fig. 14.

It is assumed that only the TE 1 0 mode

exists in the waveguide. The electric

field for this mode has only one com-

ponent, and is sinusoida-lly distributed.

The desired eigenvalues are the

Fig. 14. Square waveguide cavity. roots, Pn, of the equation
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f(p) yl coth Y1  + Y11 =0 (3.41)

As defined above, p is the complex frequency,

p OJ j~f(3.42)

and Y yl3.3

Y2 K 2k2(3.44)

K 7r (3.45)1a

k2  p 2 46E (3. ii6)

The aperture impedance Yl 1 has been computed 17and is available as

a seies n W(i). When p is real this variable is just (a/k), and for this

case it has been drawn as a graph, in Figs. 15 and 16.

For convenience, let

x-ap (3.47)
2rrc

and

Y I,(x) =G(x) + j B (x). (3.48)

Suppose t= A. and E =E o. Then

2
2Z.P er

2 = rr2  (3.50)

=1 0 4 Er x~(.1
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In terms of the dimensionless variables x, C/a, and 6 r, the eigen-

value equation becomes

f(X, ,r) = - ctr - c t - I + G(x) + j B(x) 0.2x -a 4Er

(3.52)

If real and imaginary parts of (3.52) are separated, there results

a pair of simultaneous transcendental equations. Various schemes may

be used to find the solutions; we will use one that quickly yields good

approximations to them. This problem is almost identical to the prob-

lem of finding the normal modes of a transmission line terminated

with some load, as in Fig. 17. In such a case, when Q > > 1, the voltage

is distributed essentially as if G were absent. The major function of

G is to contribute to the loss, not to the field distribution. This idea

will be carried over to the cavity problem.

Zo BT

Fig. 17. Transmission line.

Let Xon be the roots of
J4o Er X2

4Cot 1T 4 E x2  +j B(x) 0. (3.53)
a

These are real numbers,o Now assume that the roots, Xn,

of eq. (3.52) are close to Xon, and expand f(x) in a Taylor's series about

the point xon.
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f(xn) = f(Xon) + f (xn- xon) + - (Xn- Xon) + 0.
xon xon (3.54)

If we keep only the linear terms, we obtain, upon substitution of

G(xon) for f(Xon),
-G(xon)

Xn = Xon + ..... (3.55)

I Xon

The derivative, evaluated at Xon, is

fXon- (J Bn)on
3o x a) 

d" (

Sa r on xax

ixon

(3.56)

The, derivative of YII is evaluated from the series shown in Figs. 15

and 16. The real and imaginary parts are just a G nd-a(a7-) a(a/ )
and are shown in Fig. 18.

The above equations give the first approximation to the eigen-

values x n , and from these are obtained Qn . Since

a a & + n n (3.57)
n a ( + n (Z)n j 2 rc

then
a#

__n n (X n
Qn a - (3.58)2 fn a e n  }
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The real part of xn gives the resonance wavelength, in terms of the

aperture, and the imaginary part gives the decay constant in terms of

the aperture. Qn, of course, is a relative measure of how rapidly the

nth oscillation dies out.

The validity of keeping only the linear terms was checked by

computing the second derivative at one point. The point chosen was

) 0.60, r = 1; this is a point of very low Q, and the approximation

should be worst here. The inclusion of the second derivative lowered

Q by 3% and lowered (-)l by 0.7%. This is only a minor change and

therefore it is felt that the linear terms alone give sufficiently ac-

curate results.

Another approximation which brings out a close circuit analogy

may be made when Q is high. From eq. (3.56) it is seen that 2G

-a fI 'aX Xon
is the only term of which is real, and hence it provides theis te ony tem o ,Xon

only correction to the real part of xn; i. e., to the oscillation frequency.

The calculations for the first mode indicate that this correction is less

than 1% for Q > 7. Hence, for a high-Q cavity, we have the approxi-,

mate formulas,

( = =(.1) (3.59)
Xn on

- on 'f 0n B
2G -6 Xo n  2G (3.60)

AF 18(600)85 486-7 53

4- ; .. . t , . . :'= '' ! ... i ' ''''' '- ' : . °" ;... .. .; . .. .. : " '" - t. ' :r-;;



B is the total admittance at the aperture. Eq. (3.59) states that we may

ignore the aperture conductance; i. e., the radiated energy, in com-

puting the oscillation frequency. From (3.60) we see that ' G/3co may

be ignored in computing Q, but, of course, G itself cannot be ignored.

Eq. (3.60) is an approximate circuit equation for Q.I8

Another problem might be to find what geometry or geometries

will resonate at a given n To be more general, we may say that,

in the nth mode, the cavity is characterized by the four dimensionless

parameters,--, r' , and Qn" In addition, there is the parameter

(a
which is an auxiliary quantity used in computing. These param-

eters are connected by the three equations, (3.53), (3.55), and (3,58).

Hence, we might expect that the arbitrary specification of any two of

them would fix the values of the others. Actually, this does not happen.

Any pair of values of (, Er) is admissible and leads to unique ()n and

Qn" This is obvious- the geometry must specify the normal modes.

But not all of the other pairs of values are realizeable.

a. CALCULATIONS FOR THE FIRST NORMAL MODE

A series of calculations which brings out the relations among the

cavity parameters has been made for the first normal mode. The

results are displayed in the form of graphs where the independent

and . The curves could have been drawn in othervariables are T- ad r"

ways, but all the information is presented here.

Fig. 19 shows the dependence of on a for various values of E
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The curves asymptotically approach that value of -K which corresponds

to cutoff. It will be observed that very high values of dielectric con-

stant are needed to resonate the cavity when a is small.

The values of Q which obtain for the various configurations of

Fig. 19 are shown in Fig. 20. One conclusion is evident -various

values of E r may be used to produce the same A, but one of these values

produces a minimum Q. The envelope of the family of curves in Fig. 20

corresponds to the minimum Q. It increases very rapidly as -gets

smaller.

The minimum Q may be separately evaluated by maximizing the

denominator of Qn (eq. (3.58)) with respect to E r and-, and at the

same time requiring eq. (3.53) to be maintained. This may be done by

using a Lagrange multiplier. Let

A= 1  [-G f ;_7 (3.61)

xj Xon

a2

oot E -r-B a 0,0 2 a ono)on c

(3.62)

where

Xon + j  (3.63)

A is the denominator of Qn' and is to be maximized. C is the side

condition on the variables. Then
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'3A 'aC

B r + =r
r

(3.64)
A + - 0.

A glance at (3.56) reveals that -- = = 0, since Y1 1 is a function

of a only. Hence
x

'3E EC

r r

(3.65)

Calculation of the derivatives leads to the condition

B s in?-[ i 4,Er(.a) 1]
± [ ~Z~~)1 [ E~ on- (366

a.2 _ a on

4 { r1
r(Von -i

ru-o t a(366)
1 + 2er 4on 1r -(ko B  =0.

The simultaneous solution of (3.66) and (3.62) gives the values of E r

and which go with any (-) ; and with these and the minimum Q
on

may be computed as before, from eqs. (3.55), (3.56), and (3.58).

These calculations were carried out for the first normal mode of

the square cavity. The minimum Q is shown in Fig. 21 as a function of

a an
x , and the accompaning parameters -a and E r are shown as functions of

a in Figs. 22 and 23. It will be observed that the graph of Q is almost
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a straight line. The matching straight line is shown dashed in Fig. Z I,

and the following formula is very accurate for T < 0.35:

Qmin - 0.424 X)-. -(3.67) 1
It is not known whether there is any special significance to the cubic

dependence on frequency. At any rate, the rapid increase of minimum

Qwith decreasing is in accord with all experimental evidence.

From Fig. 22 it is seen that relatively shallow cavities are needed

to produce the minimum Q, and that..- changes very slowly with fre-a

quency. A cavity on'the order of one-third to one-half as deep as it is I

wide will have a low Q.
- I

Fig. 23 gives the value of dielectric constant to be used to obtain

the minimum Q at some value of- This value is not critical, since

Q is a relatively slow function of E r' near the minimum Q. A typical

curve of Q vs. 6 r for constant a is shown in Fig. 24. t
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Fig. 24. Q vs. e.frrosa /
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The dielectric constant for minimum Q increases rapidly with

decreasing --Z-, and it quickly attains impractical values. For efficient
a

operation at, say, - = 0.1, it would be necessary to resort to metal

loading of some kind (e.g., longitudinal ridges, etc.). Fundamentally,

then, the cavity would have a different shape; it would no longer be a

square waveguide cavity, dielectric loaded. The above curves and dis-

cussion of minimum Q were derived for a square waveguide cavity, but

it is felt that they give at least the order of magnitude of what could be

expected from other configurations. On this basis then we would say

that the minimum Q obtainable from a dielectric - loaded square wave-

guide cavity with - 0.1, is Q = 424. If by necessity or choice we went

to some other configuration, with the same a" we would not expect to ap-

preciably lower the Q.

b. EFFECT OF DIELECTRIC LOSS

The effect of a finite conductivity of the medium in the cavity may

be found by using a complex dielectric constant. To see this, go back

to one of Maxwell's curl equations.

V XH n =jpn En + En jPnE' En, (3.68)

where

0

0-

E (1 + ) = e - j tan 8). (3.69)
'nE

This approximation is valid when Qn > > 1. The complex relative
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dielectric constant may be introduced:

E , (3.70)

where

E, E (1-j tanS). (3.71)r r

This complex relative dielectric constant, E r, may be inserted into the

above equations in place of E-r , and the real and imaginary parts re-

evaluated. 'Rather than do this, it is easier, since tan 8 < < 1 for prac-

tical dielectrics, to consider f (eq. (3.52)) as a function of two complex

variables. Then f may be expanded in a Taylor's series, and only the

linear terms need be retained. Thus,

f(xn, E fr) f(xon, E r) + (Xn - Xon) +E Xon, r ,

nnXon r (En- r)

(3.7Z) i
The second term, , is given in eq. (3.56). The third term is

I Xon, Er

evaluated from eq. (3.52). The result is (after substitution of (3.53)),

' f 
(r r)

Xon' E r

2 [IT 4
2  Ba cscX on 4 1r tan"

0 X on a 2r() -i- rtn
on~ ~ A LEr)on-1]

(3.73)

From eq. (3.72), the eigenvalues are given by

on G+ (3.74)
Xn = xn - __f ____

'8 f I'a x xon, r
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G is the aperture conductance; we may call G the radiation conductance

and the dielectric conductance. When the Q is high, D x isand 4the ieletricXon, 
E r

imaginary, and

X(-i) (3.75)

"n Xon,E r
Qn n f(3.76)

Z(G + )

The dielectric loss does not affect the resonance frequency so long as

Q remains high, but it may have an appreciable effect on Q.

From eq. (3.76) one may write

Q Q + (3.77)
QT QR QD

where QR is the radiation Q, QD is the dielectric Q, and QT is the

total Q. Then

1 _ (3.78)

(- )n 17 iXonsr

Now numerical calculations for the first mode reveal that the csc2 terms

inG and are at least five times as big as the others. If they are

d immediately reduces to tan 8 Thus

- + tan 8 . (3.79)
QT QR

A "good" dielectric has tan 8 on the order of 0.01 or smaller. This
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gives an indication of the effect of the dielectric on the total Q.

A few statements about the stored energy associated with the

radiating cavity may be made by referring to eq. (1.12), the energy

definition of Q. By comparing this definition with eq. (3.76) it is seen

that 3 must be a measure of the stored energy; G, a measure
Io xon, E r

of the radiated energy; and Q, a measure of the energy dissipated in

the dielectric.

Refer now to eq. (3.56). The individual terms may be ascribed to

contributions to stored energy from different regions of the total
,

volume. Thus, the first two terms are interpreted as a measure of

the energy in the waveguide, and is a measure of the energy
'3xIXon

in the half-space. Now, as noted above, the csc 2 term is much bigger

than the others, so we may say that most of the stored energy is in the

cavity, and very little is in the half-space.

We can now find a more physical reason why the reciprocal of the

dielectric Q equals tan 5 . A closed cavity with lossless walls has
1
1 = tan 5 . If the radiating cavity has a high Q most of the stored

energy will be inside the cavity. Also, the fields in the cavity will be

close to the configuration existing in a closed cavity. Since the stored

energy and losses approximate those in a closed cavity, it is expected
1

that - - tan 8.

* For an interesting discussion on location of electromagnetic energy, see Mason and Weaver,

The Electromagnetic Field, Dover Publishing Company, New York, 1929. p. 266.
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The radiation efficiency may be found from these energy con-

siderations. From the statements concerning G and Q, it is seen that

Efficiency = G (3.80)

which may also be written as

Efficiency Q -T (3.81)QR

If a substitution is made from eq. (3.79), one has

1
Efficiency (3.82)

1 + QR tan (

This formula illustrates the principle that a high-Q system fundamentally

has a low efficiency. Physically, this is due to the high stored energy;

i. e., to high circulating currents and high local field intensities.

A
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IV. CORRELATION OF NORMAL MODES WITH
STEADY-STATE BEHAVIOR

1. THEORY

The correlation of normal modes of a linear system with steady-

state behavior is a subject which has been widely discussed, particu-

larly in reference to circuits. Foster has shown that any finite loss-

less network is equivalent to a chain of elementary LC circuits each

of which is resonant at one of the normal fnode frequencies, and has

stored energy corresponding to that in the normal mode. The theorem

is readily extended to cover slightly lossy networks by the'addition of

an R into each LC circuit. This is an approximation which is valid

for high-Q networks. Schelkunoff 20 has discussed this, and the exten-

sion to a system with an infinite number of modes.

The cavity antennas considered in this paper are in the class of

slightly lossy networks with an infinite number of degrees of freedom.

Hence, it is assumed that the antenna is representable by a chain of

RLC circuits, as in Fig. 25. The antenna is connected to a transmis-

sion line of characteristic impedance Z o.

The application of this equivalent circuit (and the alternate one,

a chain of series circuits) to cavity problems has been discussed in

S21,2 2 .23,2

the M.I.T. Radiation Laboratory Series, and by Slater. 3,24 Some

*of the results we shall use will be in a slightly different form from

those in the references, but the derivations are similar and will not be

repeated here.
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Any one of the elementary RLC circuits of Fig. 25 has an imped-

ance which changes rapidly near resonance, but is very stable away

from resonance. If one of these circuits is resonant at a frequency far

from that of any other circuit, then, in the vicinity of its resonance, the

rest of the network may be lumped into the series impedance Za, which

is essentially constant. The resulting equivalent circuit is shown in

Fig. 26. It is now assumed that the normal-mode Q is related to the

circuit by

Qn - (4.1)

R

and that the normal-mode frequency is equal to the resonance frequency,

wn In the references cited this Q is spoken of as the unloaded

Q, unloaded in the sense that Zo is not included.

A curve of standing wave ratio (SWR) versus frequency, for this

circuit, would have a resonance dip, and the sharpness of it would de-

pend on Q. Typical curves are shown later (see, for example, Fig. 29).

This is a measured curve for an antenna, but it is assumed that there

is an elementary circuit which matches it. The frequency of minimum

SWR is the resonance frequency.

The bandwidth is a term which is often used to describe the oper-

ating range of an antenna in terms of some specified SWR limit, How-

ever, for simplicity, we shall define bandwidth as the reciprocal of the

Q, and the SWR limit will be taken as the variable.
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There are two cases to be considered for the equivalent circuit.

The simpler one assumes that the effect of Za is insignificant and that

it can be ignored. In this case the following result can be shown. Let

R
R C SWR at resonance, if - > 1

0 - z (4.2)

0 -S-WR at resonance, if - <1.
zo

Then

n C (4.3)
2 - '1

where w2 and a are the frequencies at which the SWR has risen to

the value ri:

1 Z 1I +-Zo + -o + I+-o-o
= +1(4.4)

I I o2 O - I1 2

Experimentally, the correct value for ao is obtained by examining the

impedance curve, to determine whether R/Z o is greater or less than

one at resonance. See the references for a discussion of this point.

Slater has examined the circuit when Za is included. He assumes

that Za is constant over a wide frequency range and that the SWR far

from resonance is what would be obtained at the resonance frequency,

if the resonant circuit were removed. Under these conditions it is

See Slater's article. He finds SWR limits fo; the loaded Q, but the derivations are similar.
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Fig. 25. Equivalent circuit.

zoR C L

Fig. 26. Equivalent circuit near resonance.

23"1

3.8/ 0/ 311

Fig. 27. Deep sulfur-filled antenna.
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possible to show that

/(1 + 0-o)2 + (1 + 0-i) 2 +y( - 0o) 2 + (1 - 0.),,

/(la-)2+l+)Z -y/(1 a-o)2 + (I 1%/1+ '~ ) 2 + (1 + Oj + 1)

(4.5)

where r 2 is the standing wave ratio at Co1 and '2" '1 is 1/SWR far

from resonance, and oo is defined above.

The two formulas, eqs. (4.4) and (4.5), give similar results when

Q>> 1. With their aid the Q of an antenna may be computed from an

experimental measurement of SWR vs. frequency (plus some phase

measurement to eliminate the ambiguity about ,%o). Conversely, if one

has a value for Q, the SWR limits on the bandwidth may be computed,

after some minimum SWR has been assumed. In the antenna problem

it may be assumed that the minimum SWR is one, since the feed geome-

try is arbitrary and can be changed until this value is obtained. In this

case the bandwidth is the percentage frequency range within which the

SWR is less than 2.62. This value is obtained from eq. (4.4) when

7o = 1, and from eq. (4.5) when 7 0 = 1 and 1 = 0.

It is possible to get lower SWR limits on the bandwidth than the

value given above; namely, SWR = 2.62 for minimum SWR = 1. In

eq. (4.4), r I may be minimized with respect to a-c; the result is

r I = 2.42, for 0, o =7_. Hence, if o-o =J-, one has the minimum SWIZ

at the ends of the frequency band. This remark is of some interest

because the practical problem is to minimize the SWR as much as possible.
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2. EXPERIMENTAL

Three experimental models were constructed and tested to

check the theory. These were all square waveguide cavities, filled

with a dielectric, and flush mounted in a ground plane. These antennas

were excited in various ways and the input impedance was measured.

From curves of SWR vs. frequency the resonance frequency and Q

were obtained, as described above.

The first cavity was 3 by 3 inches in cross section and 23 inches

deep. It was filled with a block of cast sulfur and mounted in a 3-foot

square ground plane. The dielectric constant of the sulfur was meas-

ured by closing the aperture with an aluminum plate and finding the

resonance frequencies of the closed cavity. A simple calculation gave

the resonance frequencies of the air-filled closed cavity (as a check,

these were also measured), and the two sets of frequencies were con-

nected by fr" This procedure yielded a value for the dielectric con-

stant, Er = 3.80, with an average deviation of 0.01 (for the first six

resonances).

The antenna was driven by a loop in the rear wall, as shown in

Fig. 27. The short-circuited stub in series with the loop was used to

help the impedance match. The exact configuration of the loop and

stub is unimportant, since we are interested only in the resonance

frequency and Q. These characteristics are independent of the
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excitation, since it is assumed that, near resonance, the fields are es-

sentially the normal-mode fields. The feed geometry controls the

magnitude of the impedance at resonance, and, of course, it does per-

turb the field and change the resonance properties somewhat. This

effect will be noted later.

The antenna was mounted on the side of the building and allowed

to radiate into space. The input impedance was measured with a pre-

cision slotted line. It is estimated that the measured frequency is

accurate to within 2 megacycles, and that small frequency intervals (used

in measuring bandwidth) are accurate to within 0.2 megacycle. The

values of SWR are probably correct to within 5% for SWR < 50. Higher

values of SWR are not accurate because of losses in the slotted line.

The SWR of the antenna is shown as a function of frequency in

Fig. 28.* The region from 1000 to 1026 megacycles is shown dashed

because the theory predicted a resonance dip there. It was missed in

the measurement. The structure of the other resonance dips was care-

fully measured, and a typical one is shown in Fig. 29. The crosses

indicate the bandwidth points; the outer ones are at values of rI and

the inner ones are at rZ . The phase of the impedance was also meas-

ured, although it is not shown. It turned out that R/Z o was less than

* For convenience, all standing wave ratio curves are plotted on a logarithmic scale.
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one, so o= 1/SWR for each mode. This fact indicates that there was

weak coupling between the transmission line and the cavity. A better

impedance match could have been obtained by using a bigger feed loop.

The antenna has t/a = 7.67, and the first normal mode is very

close to cutoff, which occurs at 1009 megacycles. (This frequency is

indicated in Fig. 28.) The higher modes come in quick succession

because the guide wavelength changes very rapidly with frequency. The

first six normal-mode frequencies, and the Q's, were computed accord-

ing to the above theory. The loss factor (tan 8 ) was taken to be the value

25given by Von Hippel, namely, tan 6 = 0.0025. This changes slightly

with frequency.

All of the results are in Table I. The second and third columns

give the measured and calculated resonance frequencies for the various

modes. The fourth column gives the measured Q assuming only a

simple parallel circuit, by eq. (4.4). Column 5 gives the measured Q

using the more refined circuit, by eq. (4.5). Column 6 gives the Q cal-

culated from radiation losses only, while column 7 gives the calculated

total Q. Column 8 gives the efficiency.

It will be noted that the calculated and measured resonance fre-

quencies agree very closely. In most cases the measured values are

a trifle higher than the calculated ones. The Q values, however, are

not so close. In the first place, there is a considerable difference be-

tween the radiation Q and the totkl Q. This, of course, is due to the fact
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that the cavity is very deep and the dielectric losses are large. This

is particularly true for the first modes, near cutoff. Very close to

cutoff there are high standing waves in the guide, and these cause the

excessive dielectric losses which result in a low Q and a low efficiency.

TABLE I

Results for 3 by 3 by 23-inch sulfur-filled loop-fed cavity antenna.

Mode Resonance Frequency Measured Q Calculated Q Calculated
Measured Calculated Q1 Q2 QR QT Efficiency

1 - 1016 - - 1470 344 23%

2 1036 1037 104 134 430 220 51%

3 1074 1072 89.6 114 240 156 65%

4 1122 1120 82.5 97.7 172 124 72%

5 1184 1180 76.9 90.4 137 105 77%

6 1254 1251 67.1 75.6 119 93.4 79%

The calculated QT is to be compared with the measured Q. The

Q2 values are higher than the Q, ones and so are closer to the com-

puted values; they would be expected to be closer because they are

derived from a better equivalent circuit. In every case the computed

QT is higher (in some cases much higher) than Q2 . This also is to be

expected, since metal losses were ignored in the calculation. The dis-

crepancy is greatest where Q is very high, because, in general, as

noted above, a high-Q system has high losses and a low efficiency.
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The second experimental antenna was a 4 by 4 by 8-inch square

cavity, also filled with sulfur. The dielectric constant of the sulfur

was Er = 3.88. The difference in er for the two sulfur blocks is appar-

ently due to the manner in which it was prepared - the cooling rate of

liquid sulfur has a considerable effect on crystal structure and air-

bubble formation.

This antenna was excited by a stub close to the aperture, as shown

8 in Fig. 30. This location for the

stub was chosen because it is near

y" [ ' '«/, :" "~ a voltage maximum for the first

Er 3.8 8 two normal modes. Fig. 31 shows

the magnitude of the electric field

8 " for the TEl 0 waveguide mode for

Fig. 30. Second sulfur-filled antenna. the first two normal modes. These

curves were drawn by finding the guide wavelength at the two resonance

frequencies. First Mode

Pz
Second t Mod

Fig. 31. Transverse electric field for first two normal modes
of second sulfur-filled antenna.
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A good impedance match to the slotted line was obtained with a

stub 1 inch long and 1/8-inch in diameter. This stub screwed on to a

modified UG-58U fitting, so that the total protrusion into the cavity was

about 3/16-inch longer than the probe. Other length probes were also

tried, and they produced different resistance values at resonance.

Fig. 32 shows the SWR vs frequency for the 1-inch probe, and Fig. 33

shows the SWR for a 0.3-inch probe. It should be remembered that

the data for the 0.3-inch probe are not as accurate as those for the

1-inch one, because of the high SWR's involved.

There are four major resonance dips present on the curves in

Figs. 32 and 33. The first two are due to normal modes involving only

the TE 1 0 waveguide mode. These two are compared with theory in

Table II. The TEll mode propagates after the second dip (cutoff fre-

quency of TE 11 mode is shown on graphs), and the third dip is due to

the first resonance of the TEll mode. This portion of the curve is

like that obtained from two coupled circuits, and that is exactly the

situation here, since there are two propagating modes coupled at the

probe. The third resonance of the TEl0 mode is calculated to be at

1210 megacycles, so this must correspond to the fourth dip of the

curves. Again, it is a multiple dip because there are two propagating

modes. If the feed were balanced, so that the TEll mode were not

excited, then the third dip would be absent, and the fourth would be clean.
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TABLE II.

Results for first two normal modes of 4 by 4 by 8-inch
sulfur-filled, probe-fed antenna.

Probe Mode Resonance Frequency Measured Q Calculated Q Calculated

Measured Calculated Q1 Q2 QR QT Efficiency

1 -inch 1 782 799 39.6 41.0 71.9 61.9 86%

2 936 961 30.7 32.4 32.7 30.4 93%

0.3-inch 1 794 799 35.2 41.8 71.9 61.9 86%

2 957 961 22.3 26.0 32.7 30.4 93%

The first two resonance dips were measured carefully, and

curves similar to that in Fig. 29 were obtained. It will be noted from

Table II that the resonance frequencies of the small probe are closer

to the computed values than those of the larger probe. The small shifts

in resonance frequency are due to a perturbation of the fields by the

probe; the smaller probe causes less perturbation and hence less shift.

According to general perturbation theory of cavities a metal protru-

sion in a region of high E and low H should lower the resonance fre-

quency, whereas one is a region of low E and high H should raise it.

This general statement correctly predicts the lowering of the resonance

frequency in this case. Also, according to this theory, a loop in the

rear wall should raise the resonance frequency, and this was observed

in the first antenna.

AF 18(600)85 486-7 83



Observe that the measured QZ for the 1-inch probe at the second

mode is higher than the calculated QT. This is the only case in all

the measurements wherethis occurred, and it is not expected because

wall losses should lower the measured Q from the computed value.

However, this measurement is unique in one other respect - R/Z o is

greater than one, so that the transmission line is strongly coupled to

the cavity. This strong coupling implies that there will be high local

fields near the probe, and apparently the total stored energy increased

by more than enough to offset the wall losses.

It was attempted to make an independent check on the theory by

measuring the efficiency of the antenna. This was done on the low-

frequency efficiency meter, a special instrument built at this laboratory,

which is described in various reports. The measured efficiency for

the 1-inch probe at the first resonance was about 80%. This is quite

close to the computed value, but it has tentatively been shown that the

measured efficiency varies greatly for different probe positions and

for slightly different frequencies. This indicates that the efficiency is

quite dependent upon the feed perturbation; i.e., upon higher nonpropagat-

ing waveguide modes. This has only a minor effect upon the resonance

frequency, but the effect on Q may be considerable. Actually, no defi-

nite conclusions may be drawn because of possible large inaccuracies

in the efficiency measurement.
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The third antenna was a shallow one having approximately the

geometry necessary for minimum Q. It was basically 3 by 3 by

1.2 inches, but to avoid difficulty with higher modes it was cut in

half with an image plane.1 This automatically balanced the antenna,

so that the TE 1 1 mode could not be excited. A sketch of the antenna

is shown in Fig. 34. The cavity was filled with a mixture of lead-

chloride and mineral oil, which had a dielectric constant of 8.41 ± 0.06,

measured as described above.

-b"8"

Fig. 34. Shallow half-cavity.

AF 18(600)85 486-7 85

- .--~--



3q0Jd JIWS uIMS 60-1 OZ
co 0 w0 c 0

10 to o N N - - -

--------------------------------------------------

ci 4)

o -0

0

00

U)
;TIP o

0

oD 0

0

0

to t N N~ N -

Oqoid o6jD1 HimS 60-1 OZ

AF 18(600)85 486-7 86



The cavity was excited with a probe on the center line of the

image plane and 1/4-inch from the aperture.' A probe 0.240-inch

long and 1/8-inch in diameter gave a reasonable impedance match.

The SWR on the slotted line was measured as above and it is shown

in Fig. 35 as a function of frequency. The antenna impedance was also

measured with a much smaller probe, 1/8-inch long and 0.05-inch in

diameter. The standing wave ratio with this probe is also shown in

Fig. 35.

The calculated resonance frequency for this antenna is 1200 mega-

cycles, so there is a considerable deviation here. According to the

above general theory the shift is in the correct direction and is less

for the smaller probe, as expected. Apparently for shallow cavities

the effect of the feed becomes more important. In this case it pre-

sumably shifted the resonance frequency by 8%..

Table III gives the comparison between measured and calculated

resonance frequency and Q. The losses in the dielectric were not

considered, because the value of tans for this medium is not known.

TABLE III.

Results for first normal mode of 3 by 1.5 by 1.2-inch cavity
with image plane, filled with lead-chloride, mineral oil mixture.

Probe Resonance Frequency Measured Q Calculated Q

Measured Calculated Q 1  Q2  QR

Large 1100 1200 13.7 15.0 15.8

Small 1136 1200 11.8 14.4 15.8
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APPENDIX I. FIELDS OF AN IMPULSE CURRENT

We now investigate the fields produced by the impulse current

Jo = q 8 (P - Q) 8 (t - to). The only unusual thing about this current is

the 8 -function in time. The idea of a current element which is in-

finitesimal in its spatial extensions has long been a convenient concept.

Jo may consist simply of a point charge Q moved from A to B at

time to. Points A and B are very close together, and the motion

takes place in a very small time. The current will therefore consist

of a pulse at t =t o .

There will be static fields before and after to, but they will

differ by a static dipole field due to a dipole Q AB. To see this, use

the law of superposition. Fig. 36 (a) shows the configuration for t > to

and Fig. 36(b) shows the initial configuration, for t < to. The difference

between these is the dipole Q AB. It is shown below that the dipole

moment Q AB must equal q.

Q Q -Q Q
0 2w8 - -- w21

A El A B A B
(a) (b) (c)

Fig. 36.

Mathematically, the pulse has been represented by a 8 -function.

It is sufficient for our purposes to define this function by its integral,

as was done in section II. For computing the fields we will need the

derivative of the current, and thus we need the derivative of the
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a -function. Call this the D-function, and define it by

t
f D(r - to) dr = 8 (t - to). (A.1)

If the 8 -function is pictorially represented by a steep pulse, then the

fD-function must be a double pulse, as

a(t-t O ) in Fig. 37. The D-function is some-

t times called the "unit doublet impulse"

I function.28

D (t- to) Now consider the equations that

t the fields satisfy. Maxwell's equations

areI
""I 'a D

I Vx H =--=+ Jo, V. B= 0

. to (A.2)

'aB
Fig. 37. 8 and D functions. VX E = -- V •E p.

Let

B =Vx A, (A.3)

then DA
(A.4)- t

If
V. A + AL =o36 , (A.5)

then both A and 0 satisfy the wave equation, and A is given by e

A(Q) = 4 dv -q (t to ). (A.6)

AV
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By [_ So is meant the retarded value, .10 (t - Z), where r is the dis-

tance from P to Q. These equations are valid for an isolated source;

i. e., one in free space.

Now let q be directed along the z-axis, at the origin of coordinates.

The coordinate system is shown in Fig. 38. The vector potential A

has only a z-component and, by symmetry, has no -dependence;

therefore H has only a O-component.

z

eQ0

r 1

P

xIy

Fig. 38. -Spherical polar coordinate system.

SAz 1 -Az Br
HO Az BT P - r p (A.7)

Now'ar =-P = sin 0 (the coordinate z is kept constant in this differ-
No P r

entiation), and, from (A.6),
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Lz /j, 8 rt 1 D 1 r t (A.8)
r 4

1T rC 0 c Cj

Hence

H q s in6_ [ 1D t (.L +kt to (A. 9)
4Tr r c c r2\C]

Now find the potential (D , from eq. (A.5).

FL-t= -V Ar - Co 0AZ (A. 10)
t z ~r '3zr

Substitute (A.8)

_6 k ~q cosG ir

Integrate with respect to t:

E D=q cos [1 r) (t - r 1 r] (A. 12)_r (t -- u- -to )LT rc to c r2

The integral of the 8 -function is U, the step function, defined by

U~ .o (A. 13)

1 if > to

Note that an arbitrary function which is independent of t may be added

to (D . This corresponds to a residual static field.

The electric field is now found from eq. (A.4). The contribution

from the vector potential is
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z, r, 0, etc. are unit vectors along the respective coordinate lines.

The other part of E is

-'ar -r -0

=q cose 0 t r 2 r 2r
= r 41 Eo e D(t 0t - )- (t -t o 3 -- U(t -t o -

- rc2  rc

q sin L 1 r) + 1 (A.5)
4 1T E r 2 c toc r 3  c

Then

Er Zqcos (tto + c U tto -r (A.16)
4-f r2 c r 3cJ

Ee 4 ~t- °si)n rZ (t _ to _ r) + c3 U(t -to r )

0 41T E Lrc c r 2c r 3  Oc

(A.17)

Equations (A.9), (A.16), and (A.17) give the electric and magnetic

fields of the impulse current. In section II these fields are called Go

and F o .

The 1 terms of E and H form the customary "far field." When
r _ -

the other terms are ignorable the field becomes transverse, and, as in

a plane wave,

E8_
H (A.18)

The 1 terms contain the D-function, so the field at a distant point
r

consists of two pulses of opposite sign, one after the other. They arise
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from the two accelerations of the charge - one to start it at A and the

other to stop it at B. This is analogous to the close waves of compres-

sion and rarefaction which propagate after an explosion.

The 1 terms of E are

E - q (r -2-cos 0 + 6 sin ) U(t - to - ) (A.19)
- e r 3  -

and this is exactly the static field of a dipole q; the field arises at

t = t0 and propagates outward with velocity c. This is the change in

the static field due to the current Jot as noted above.

The above fields have been derived for an electric current im-

pulse, but if electric and magnetic quantities are properly interchanged

they become the fields of a magnetic impulse. Discussions of magnetic

sources are found in the literature, and the application to the impulse

current follows exactly the lines indicated above.

As an example of the use of these results, let us find the field of

an oscillating dipole which is suddenly shut off at t = t 1 . We shall

confine our remarks to EG because that component has all the essential

characteristics. The current is represented by

J(t) = z q cos w t 8 (Q) U(t I - t). (A.20)

The electric field is given by eq. (2.6) of the text:

* See, forexample, Schelkunoff, S. A., Electromagnetic Waves, chap. VI.
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Ee(Qt) = f f (Pto) Ge(Ot, Pt o , z) dto dvp. (A.2l)

The e-component of Go is given by eq. (A.17). This gives

CO

E e (Qt) - q sine Cos W to U(t1 - t0 ) [D -o

1i ( r c
+ (t -to - -) +? u(t - t dto. (A.zz)

The first integral on the right-hand side is integrated by parts:

f [cos Cot o  U(t1  - to )] D(t - to -_ ) dt0

C 00

- - cos cot0 U(t 1 - to) 6 (t - to -)

to = -O

00

- f sincoto U(tl - to) + cos cot 0 (tl - to) (t-to -) dto
-wX

0- wsinw(t- r ) U[(tI +r) -t] - cos ot I a[t (t +r)].

(A.23)

The first term is zero because the 5 -function is zero at ±0. The

second term is the "radiation" field of the dipole. It is sinusoidal in

time and ends abruptly at (t 1 + r). The third term is a pulse which
Ic

radiates at the instant the current is stopped. It has a magnitude pro-

portionalto cos cdtl; i. e., to the instantaneous value of the current when

it was stopped. If the current were zero at t 1 there would be no pulse,

because no infinite acceleration would be needed to bring the charge to

rest.
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The second integral in E0, eq. (A.22), is integrated directly.

COCo Cot o U(t I - to) a (t - t o -)dt °

= cos 60 (t - U [(t I + -)-t]. (A.24)

This term (when multiplied by its factors) is the -1 part, the induction

field, of the dipole. It also ceases abruptly, but there is no pulse when

it stops.

The third integral in Ee is integrated by parts.
CO

fQcos Ct o U(t 1 - t0) U(t - to - r) dt o

1* r
-- sin co U(t 1 - to) U(t - t -) t -- -w

6° G0

c + U~t 1 tto) ua (to r*
- sin0 0 Uw t -to S( t o  r) + 8 (t I  o U(t -t o  ) dt 0

SCO CO0

sinw to r r r
U(t I - to) U(t- t o - + sin o (t- ) L'I c'J

0 -OD

11
+ I sin(,) t U[t _-(t I + r)] (A.25)

This second term is the customary - portion of the field o an oscil-
r

lating dipole, and it stops at t = (t 1 + -). The last term is the residual
C

static dipole field existing for t > (t 1 + -L). It is just a constant extension
c

of the time dependent part; i. e., the second term, which is cut off at

t = (t1 +r). The first term is zero at the upper limit and at the lower
c
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limit may be interpreted as the static dipole field which existed before

the current was started. (The transients which occurred when the cur-

rent was started have been ignored because it may be assumed that they

have all died down by time t 1 .) Both of these static fields may be ignored,

along with the static portion of P mentioned above.

Thus we have, for the nonstatic portion of the -component of

electric field due to an oscillating dipole which cuts off at t = tl:

E(0) q sin r r c r)]
- -- sin - +) W 3

4Tr rc r wr

[(t I  r) -t q sin 0 1 Cos It -

4 rc t

(A.26)
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* APPENDIX II. CAVITY GREEN'S FUNCTIONS

1. INTRODUCTION

This appendix is concerned with the expression of electric and

magnetic fields in a closed region in terms of their values on the

surface. The fields will be written as a linear combination of nor-

mal modes appropriate to the region; these modes satisfy the same

differential equation as the field, and certain boundary conditions.

The result is a generalized Fourier series, where the function to be

expanded is known only on the surface.

This problem has been discussed in the literature, for both

scalar and vector fields.23 ' Soos It has been shown34 that the modes

obtained from a cavity with a homogenous "short-circuit" boundary

condition (i. e. , n x E = 0 on S) form a complete set for the expansion

of vector fields with vanishing tangential component on the surface.

The earlier writers on the present subject assumed that these short-

circuit modes were complete for the expansion of fields with nonzero

tangential component on S, but it turns out that they are not, and ad-

ditional terms must be introduced. This lack of completeness was

first pointed out by Wigner.' It was independently discovered by the

author when an attempted expansion failed to yield the correct results.

* Private domm.unication. Professor W igner and Dr. Teichmann very kindly made some as yet

unpublished material available to the author.
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The function Teichmann and Wigner use to complete the expansion

is different from those used here, although it will be shown that the'

two methods are equivalent. The complete expansions presented

here were originally developed by Schwinger, although the present

method of derivation is somewhat different. In the same paper with

the complete expansions Schwinger produced an alternative (and ap-

parently simpler) expansion using only the short circuit modes.31

2. EXPANSIONS IN EIGENFUNCTIONS

Let V be a homogeneous region bounded by S, with outward

normal n. There is an external source with a time dependence ej~t

producing a field in V, and the electric and magnetic fields in V sat-

isfy the wave equation

2V V×x E - k E 0. (A.27)

A knowledge of n x E or 11 x H on S determines E and H in V.

Now define the functions Ea as solutions of the equation

V x VxE - k 2 E= 0 (A.28)

subject to the boundary condition

nx E. = 0 on S. (A.29)

To show the orthogonality of these functions, use the vector analogue

of Green's theorem:
s

3

fV(W"7x. x B - B • Vx 7 x A)dv

f(B x V xA - A x x B) n ds. (A.30)
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If A =Ea and B = E then from eqs. (A.28) and (A.29),

(ka - k,8 2)fv Ea . E dv= 0. (A.31)

The functions corresponding to different eigenvalues are therefore

orthogonal, and, if there is degeneracy, appropriate linear combina-

tions will yield an orthogonal set of functions going with the same

eigenvalue. The functions may also be normalized, by setting

fv • E8 dv= . (A. 32)

We also need the magnetic-type modes, denoted by Ha and

defined by

ka Ha x Ea (A. 33)

Then, from eq. (A.28),

ka Ea VxHa . (A.34)

The functions Ha satisfy the wave equation

V XVx - kaZ Ha 0 (A.35)

with

nX V x H =0 onS. (A.36)

To demonstrate their orthogonality use the identity

V7. (A x B) = B V x A - A Vx B (A.37)

Thus,

f H dv f Ha .Vx E/3dv

V ~k fV

[f" (E x Ha)dv + fv x"× dv.]

(A. 38)
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Substitute (A. 34) and use the boundary conditions to obtain

fV~ °HS,8 dv = 8,,8 .(A.39)

The sets of functions Ea and Ha are the electric and magnetic

fields - the normal modes - which can exist in the closed cavity.

Note that, because of the normalization, Ea and Ha do not form an

electromagnetic field; if Ea is an electric field then (jFi Ha) is

the associated magnetic field.

Now consider the eigenvalue zero. It must be examined sepa-

rately because the above definitions are not valid in this case. Let

the index p denote functions going with this eigenvalue, and from now

on reserve a for eigenvalues other than zero. The electric-type

functions satisfy

V X Vx, _- (A. 40)

with

nx E =0 onS. (A.4 1)

From these two equations it is possible to show that E is irrotational.

Thus, set

VXE =Vu (A.42)

Then

v = 0 (A.43)
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and, from (A.41),

Bu
n - 0 onS. (A.44)

The only solution to (A.43) and (A. 44) is u = constant, and hence

× Ep = 0. (A.45)

The functionsEP are irrotational, and all the functions Ea are

solenoidal. Inasmuch as the fields to be expanded are solenoidal, it

might seem reasonable to assume that the functions E are unneces---p

sary here, although they may be useful for the expansion of a static

field. However, to obtain a complete set it is necessary to have the

eigenfunctions going with all eigenvalues; therefore we shall keep

the irrotational functions.

There is an infinite number of functions E They may be

defined by
1

E= , (A.46)
X.

where

72 op + XP 2 p = 0 in V (A.47)

and

Op i 0 onS. (A.48)

By using Green's theorem it is shown that the functions op form an

orthonormal set:

f op0 dv = , (A. 49)

iI
AF" 18(600)85 486-7 101 ,

,* 1



and it then follows that

f EP EEv dv Spv " (A.50)

The condition n x E = 0 on S is also satisfied.

Similarly, the functions Hp are defined by

Hp = 7 l__qp, (A. 51)

where

V 2PP + X 2jp =0 in V (A. 52)

= 0 onS. (A.53)
n

The Op's may be normalized:

f qjP dv = Spy 
(A.54)

and then

fv H dv =SPV (A. 55)

Also, n° H = 0 on S. This is the appropriate magnetic-type bound-

ary condition to satisfy here, rather than (A.36), because V x !!p is

identically zero.

The functions p and Ip are complete sets for the expansion of

scalar functions (which satisfy certain requirements as to continuity,

etc). They are the functions used by Sommerfeld in his discussion

30
of the scalar cavity Green's function. From the theory of Laplace's

J
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equation it can be shown that there are no functions going with X~ 0,

(except ',constant). Therefore, none of the functions E andH

are possible source-free static fields, because their divergence is

not zero.

Now assume that, at every point within the cavity, it is possible

to write E and H as linear combinations of the above functions:

Ec 2 a p E~+a~1  (A. 56)

H 2 b Ha +XTb H (A. 57)

By the orthogonality relations,.

=a f EEa dv

ap f E Ep. dv, (A. 58)
V

*and similarly for the b's. The expansion coefficients are found in

terms of n x E from Green's theorem. From (A. 27) and (A. 28).,

(kj k 2 )f EE, dv f (E VxV x Ea - Ea. '7 xX E)dv

V V

=f (Ea~ x V x E -E x V )( IEJ n ds.
S

(A. 59)

Therefore,

jE E0. dv = (n xE) . ds. (A. 60)
fV k-k 0 .  S
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Similarly

fV E dv 0 (A.61)

Ha dv = f (n x E) Ha ds (A.62)
- kCz - ka 2  -- _

H~ H dv=--f (n xE) .H Pds.(A63- V--P WA S

Therefore ,

ka

H Z - ka _Eaf (H6 E) . Ha ds (A. 64)

H k - k S 0 -

(A. 65)

The solenoidal set E alone is sufficient to represent E but

both sets, H. and _, are needed for H. This difference is due to

the different boundary conditions on the E. and Ha. The expansion

is analogous to a Fourier series over the half-interval 0< x<w. The

sines alone form a complete set, but the cosines must also contain

the constant term. The constant term is derived from the eigenvalue

zero.
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Teichmann and Wigner complete the expansion by adding

an irrotational vector, as follows.

E = X aa Ea (A.66)
- a

HH= y b H + 7u, (A.67)
a a

where

7  = 0 in V (A.68)

n - H- onS. (A.69)
3n

The function u is defined by eqs. (A. 68) and (A. 69), in terms of

normal H on the surface. Now the coefficients au and ba. are given

in terms of tangential E, and it would seem advantageous to con-

pletely specify the expansion in terms of tangential E, as was done

above, in eqs. (A. 64) and (A. 65). Actually, of course, tangential E

specifies normal H, so there is no essential simplification. The two

methods are in fact equivalent, as will now be shown.

The function u may be written as

u(Q) = f N(Q,P)- dsp, (A. 70)

where N(Q,P) is the Neumann function (Green's function) for the

region. It is given by another boundary-value problem, but may be

* Their functions Eand Ha are slightly different from the ones used here, because of different

inormalization conditions.
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written as

N(Q, P) --h - p (Q) p(P) •(A. 71)

When this expansion for N(QP) is substituted into (A. 70) the gradi-

ent may be taken, and it may then be shown that the result is equal to

the second series in eq. (A. 65).

The procedure outlined above does not work when k = k.; i. e. ,

when the actual field oscillates at a resonance frequency of the cavity.

In such a case, sincef E - Ea dv is finite, the surface integral

fsn x E - Ha ds must be zero. This is the exceptional case when the

uniqueness theorem is not valid. A more precise uniqueness theorem

would read: values of n x E on a closed surface uniquely determine

the (source-free) interior field unless the oscillation frequency hap-

pens to coincide with a resonance frequency. In this case, since the

resonant mode has n x E = 0 on S, it may be added to the field with-

out changing n x E on S.

Since the functions Ea correctly represent E they must also

be adequate to represent H. We may therefore write

H = c. E. , (A.72)
-a

where
ka

a f (n x H). H ds. (A.73)c k2 _2a __ _a

k -af

H is now expressed as a sum of solenoidal functions, in terms of

n x H on S. However, if n x H (rather than xE) is known on S,
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the expansion for E would use both sets of functions, I and Hp. In

the present case the theory- is applied to a radiating cavity where

n x E is known (or assumed) in the aperture; therefore the first ex-

pansions above are used. Other combinations would be possible if we

had followed Slater and allowed a piece of the surface to be an open

circuit (magnetic conductor). If it covered the entire surface then

the H I's would be the Ea's of the above discussion, and obviously

nothing new would be gained. If mixed boundary conditions were al-

lowed then both sets of functions would be needed, in general.

It is of interest to show that the series (A.64) and (A.65) satisfy

the Maxwell equations. However, as pointed out by Slater, the series

for E and H cannot be differentiated term-wise; but it can still be

shown, for example, that the expansion for curl E agrees with the

expansion for H. Curl E may be expanded as a sum of the Ha and

H functions:_P
7X E H Ha'7x E dv+XHP fH VxEdv.

(A. 74)

Use the divergence theorem to obtain

V XE =I ja[kafE -Edv +(n xE) Hads]

H, f (n x E) "-H ds. (A.75)P S --
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The first part of the first sum in (A. 75) is equivalent to what one

would obtain by taking the termwise curl of (A. 64). Substitution of

(A. 60) yields

17 X E -jWA Y H Zf(n x.E) Ha d
- k2 _ ka S

+pHp --f(n x E) .Hp dsJ (A.76)

The bracketed expression is exactly the expansion for H, eq. (A. 65).

2
The cavity Green's function, F' (Q,P,k) is defined by

2

H (Q) = f -(Q,P,k) K (P) ds. (A.7 7)

2
A comparison of this with eq. (A. 65) shows that F may be written as

r(QP,k) =7 z Ha (Q) a(P)+Z4Hp (Q)Hp(P). (A. 78)

c, ka p

This is the tensor (dyadic) cavity Green's function. Note that

2 2
" (Q,P) = F(P,Q). (A. 79)

3. APPLICATION TO WAVEGUIDE CAVITY

These results will now be applied to a cavity in the shape of a

waveguide. The cross section is arbitrary but uniform along the

z-axis; there is a short circuit at z = 0 and the aperture is at z =

(Fig. 39).
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a. CONSTRUCTION OF
EIGENFUNCTIONS

The first thing to do is to set

up the cavity eigenfunctions. The

solenoidal functions may be con-

Z structed by observing that they

0 consist of two sets, one TE, and

one TM, to the z-axis. The cross-

sectional variation will be just the

Fig. 39. Waveguide cavity. waveguide modes, described in

section II, and the z-dependence is

t
such as to make E zero atz= 0 and z=. The TE modes may

therefore be written as

(xyz)Na , TE (xy) sin a = 1 Z, 3,

(A. 80)

Up to now there has been a single subscript, a., on the mode functions.

This actually stood for three indices, because the cavity is a three-

dimensional region. In eq. (A. 80), a takes on integral values, and the

subscript v stands for two indices.

The normalization condition determines NL:

1= NI sin dfeE (xy)" TE(xy) ds. (A.81)
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With the result that

~TE (xyz) a-I si a E a=(. 2
sn ev (x Y) ,a=123 ~ (.

~TE (xyz) = 0.a=0. (A. 83)

Then, from-eq. (A. 33),

HTE TE(A84

1 air airz

_ '2 -cos- (-x ey+ ye,, )+ zcomponent. (A. 85)

The main interest here will be on the transverse fields, so the z-

component is merely indicated. The quantity in brackets is equal to

z x e V, and, from eq. (2.46), the TB magnetic modes become
air

H TE (Xyz)= A ~Cos h T(xy) + zcpt. a 1,2,3,- (A. 86)
~kav-

TEHov- (xyz) =0, a =0. (A. 87)

Similarly,

Ha ___z c T x) a =1,2,3, (A. 88)

TM ~ -o h hMjMy, =xy(.),9

HTMv(x yz) 11T9 xy V~ A.
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and
alT

* E 7 ~M(xyz) ~ -- z in TM(xy) + z cpt, a123" (.0

TM yz z cpt, a-= 0. (A. 91)Fb) MV yz

The above functions are all the solenoidal functions for the cavity.

The irrotational functions Hpare also needed. They are defined by

eqs. (A.5 1-) through (A. 54).

In view of the boundary condition on 0P, the z-variation must be
plTZ

cos- , where p is an integer. Let

p(xyz) =T (xy) cos p7 p 0, 1,2," (A. 92)

then

2 2
2T + K, =0 on cross section (A. 93)

-=0 on contour ,(A. 94)

wherez

2
+2  - (A. 95)

and

K 2 2. (A. 96)
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Now (A. 93) and (A. 94) are just the equations satisfied by the

potential functions which generate the TE waveguide modes!3 a Hence

the eigenvralues K. must be the cutoff wavenumbers for the TE modes,

and the functions Tv (xy) are equal to the potential functions, apart from

a constant. This furnishes an opportunity to express the functions

in terms of hJE.

The potential functions F are defined by

eTE(xy) = 7 × XT (xy), (A. 97),

and they have a z-component only. If the curl is expanded it is seen

that

TE(xy) = -z X VzF' (xy), (A. 98)

where F is the z-component of f., If we substitute for eTE from

eq. (2.46), we have

h TE(xy) = V 2 F, (xy). (A. 99)

To find TV in terms of F , set

TV (xy) = N, F, (xy). (A. 100)
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Then

v dprz
v = f Cos dz T, (xy) ds

fV 0 A~

tN2__ 2
2 K2  AA

v

Nh T E  hT " ds. (A. 101)
2 VK2 A V V

Therefoxe,

Nv K V p = 1, 2,3," (A. 10 2)

and

Nv= KV p =0. (A. 103)

Then
a.1 1 1 ~z

Hptv  V [pv_  7[ Fv (xy) cos-J (A. 104)

xpv XLpv

xpv

H__, (xy) = (xy) P = 0. (A. 106)
Ho.,(Xyz) = -_V ¥ =0 .. 16

The functions*ineqs. (A. 105) and (A. 106) are the irrotational functions

needed.
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b. EXPANSION OF MAGNETIC FIELD

In section'III, in connection with the normal modes of the radiat-

ing waveguide-cavity, it was stated that the transverse magnetic field

obtained from the eigenfunction expansion agrees with that computed

from transmission line theory. This will now be shown.

The expansion is given in eq. (A. 65), and now replace w by the

complex frequency p. The integrands are zero except in the aperture,

so

jpE I

H =25:Hav (Qz x E) • H -ds +JH (zx E) .-HdS.-- a v - ' _ 2  f a__P _0 Vv-- --~- 2 u ~ Ap/ A ,
k -k APPAf

(A. 107)

Consider first the TM modes of the first sum. Substitute for HTM

from eqs. (A. 88) and (A. 89), retaining only the transverse fields.

t D 2 az P
H (xyz) : Y) - Cos - () (z x E) - h ds
-- a-l v- 4A-

1 jp

+2h (xy)- f(z x E). hM ds. (A. 108)
k- k?- f

a
The (-1) comes from the cos 0A-_z in the integrand, evaluated at

t'
Z . The notation is rather cumbersome, so the following list of

symbols is included for clarification:

a = number of- in the waveguide (for the eigenfunctions Ea, etc.)
2

V = waveguide mode number (stands for two indices)
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K Zir x cut-off wavenumber of Vth waveguide mode

k = p ,/'W =2-ir x complex oscillation frequency of the

normal mode of the radiation problem.

kv- 2Tr '- x oscillation frequency of the avth cavity mode.

k - + mode.

2 +
Kz _ k2 . (A. 109)

Hence,
a T2

2 2 2k - k =-7, '- 1" (A. 110)

Rearrange eq. (A. 108) to give

_. HH TMTM
H(xyz) =- - (xy) f e ds{--

2 A-

a 2 g +  zcos } (A. 111)

a=l (9

But, as may be verified, the quantity in the brackets is the cosine ex-

pansion of ( ,o'h ) ,over the range 0 < z < . Also, for TM

modes, the quantity PE is the waveguide characteristic admittance,
7V

TMthy TM (see section II). Hence the contribution of the TM modes to the

transverse magnetic field reduces to

t (zM hTM (,y coshyv z f TMH (xyz) = T -y E . e. ds. (A.11Z)
V sinhy, - f A

Now consider the TE modes. We will consider the irrotational

modes together with these because their transverse dependence is of
-i
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the TE type. Substitute for TE and in (A.107) -- btain

2
t TE 2 airrz a jP!

H(hzXE))11 h TE ds. (A.113)

a 7l V~JA ds. -k2f zE)hv

After using eqs. (A. 96), (A. 109) and (A. 11i0), the equation becomes

t v , I przH (xyz) = 3 h f .eTE { 2 j . -

+_ Z-v (xy) Ef ev x-E)- h TEd ( A.~ co1s)

+: P v+:- V A

The last two sums may be combined (change the dummy index p to a )

and, after a little manipulation, one obtains

t -77 j 1
H (xyz) =Z hvTE(x) e "- eE ds{

jp/ - A -

+ E 
Co 

(--L-cs -- ( . "5'T a.1rzl°K + ( CnI_ ''
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The bracketed quantity is again (sh / , and is the charac-

teristic admittance for the vth TE mode. Therefore, the contribution

of the TE and irrotational eigenfunctions has the same form as that

of the TM eigenfunctions. Let the subscript v denote all the wave-

guide modes, and as a final result, write

t cosh /V z
S(xyz) =-y h (xy)J E evds. (A. 116)

- sinh Y/, A

Now consider the cavity from waveguide theory. We have a sec-

tion of waveguide, shorted at z = 0, and with z x E prescribed at

z = . From section II,

t
H(xyz) = Z I,(z) h, (xy) (A. 117)

t
E(xyz) I V, (z) e. (xy) . (A. 118)

At any point z, IV is the sum of two waves:

I, (z) = A, (eNJ + eZ). (A. 119)

Let z = -, then

AV= (A. 120)
2 cosh 1t

But, from eq. (3.27),

IV(t) -V (t) y coth yt -. coth t fE eds. (A. 121)
A

AF 18(600)85 486-7 117



It follows then that

cosh 'Y z
V - f E• e. ds (A. 122)

sinh yvt 4

and

t cosh y/ z
H (xyz) = h -y, (xy) f E e. ds. (A. 123)

V , sinhy,,tf A - -

It has therefore been shown that the transverse magnetic field

of a waveguide cavity calculated from the expansion in cavity eigen-

functions agrees with the much simpler calculation based on waveguide

theory.
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APPENDIX III. THE STATIONARY PRINCIPLE

It is desired to show that the propagation constant k, as calcu-

lated from eq. (3.17) of the text, is stationary with respect to first-

order variations of tangential E about the true value. This stationary

principle follows from Schwinger's work. This particular proof is

due to Professor Rumsey (Final Engineering Report 400-11, ARDC).

The equation under investigation is

f f K (Q) F(Q,P,k) K (P) dsp dsQ 0, (A.124)
AQ Ap

where
1 2

F=F - F (A.125)

Take the first variation:

f f S (Q) F- (Q,P,k) K (P) dsp ds Q
AQ Ap

+ f( f ()-F (Q,Pk) K(P) dsp dsQ
Qp

fA Af (Q) f (Q, P,k)5 K:IP) d sp d sQ 0. (A.I126)

Q P

1 2
Now F and F are symmetric, and therefore F is symmetric (with

interchange of Q and P). The last term therefore becomes (c. f.

eq. (3.14) of the text)

f fA K(Q) F(Q,P,k) S K (P) dsp dsQ

- f K (P) r (P,Qk)K (Q) dsp ds. (A.127)
AQ Ap
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If the order of integration is interchanged this is just equal to the first

term of (A.126). But the first term is zero when evaluated at the

correct K, because

zx fAF (QPk)K (P) dsp -z x (Q) - H ()] = 0. (A.134)

Tangential H is continuous across the aperture.

Thus the first variation is

r (Q) 8 f- (Q,P,k)K (P) dsp dsQ 0, (A.135)
' A

or

8k f f K(Q) -. (P) dsp dsQ = 0. (A.136)
Q A p k

The integral is presumably not zero, so

8 k = 0. (A.137)
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